Bistable systems: Master equation versus Fokker-Planck modeling

作者: Peter Hanggi , Hermann Grabert , Peter Talkner , Harry Thomas

DOI: 10.1103/PHYSREVA.29.371

关键词:

摘要: Relaxation and fluctuations of nonlinear macroscopic systems, which are frequently described by means Fokker-Planck or Langevin equations, studied on the basis a master equation. The problem an approximate modeling dynamics is investigated. A new presented superior to conventional method based truncated Kramers-Moyal expansion. approach shown give correct transition rates between deterministically stable states, while overestimates these rates. An application Schl\"ogl models for first- second-order nonequilibrium phase transitions given.

参考文章(13)
Peter Hänggi, Harry Thomas, Stochastic processes: Time evolution, symmetries and linear response Physics Reports. ,vol. 88, pp. 207- 319 ,(1982) , 10.1016/0370-1573(82)90045-X
N. G. van Kampen, a Power Series Expansion of the Master Equation Canadian Journal of Physics. ,vol. 39, pp. 551- 567 ,(1961) , 10.1139/P61-056
H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions Physica D: Nonlinear Phenomena. ,vol. 7, pp. 284- 304 ,(1940) , 10.1016/S0031-8914(40)90098-2
Hermann Grabert, Melville S. Green, Fluctuations and nonlinear irreversible processes Physical Review A. ,vol. 19, pp. 1747- 1756 ,(1979) , 10.1103/PHYSREVA.19.1747
F. Schl�gl, Chemical reaction models for non-equilibrium phase transitions European Physical Journal. ,vol. 253, pp. 147- 161 ,(1972) , 10.1007/BF01379769
Kazuhiro Matsuo, Relaxation mode analysis of nonlinear birth and death processes Journal of Statistical Physics. ,vol. 16, pp. 169- 195 ,(1977) , 10.1007/BF01418750
Daniel T. Gillespie, On the calculation of mean first passage times for simple random walks Journal of Chemical Physics. ,vol. 74, pp. 5295- 5299 ,(1981) , 10.1063/1.441695
Peter H�nggi, Peter Talkner, Non-Markov processes: The problem of the mean first passage time European Physical Journal B. ,vol. 45, pp. 79- 83 ,(1981) , 10.1007/BF01294279