Challenges inbuilding a DBMS Resource Advisor

作者: Eno Thereska , Dushyanth Narayanan , Anastassia Ailamaki

DOI:

关键词:

摘要: The AVATAR Information Extraction System (IES) at the IBM Almaden Research Center enables highprecision, rule-based, information extraction from text-documents. Drawing our experience we propose use of probabilistic database techniques as formal underpinnings systems so to maintain high precision while increasing recall. This involves building a framework where rule-based annotators can be mapped queries in system. We examples IES describe challenges achieving this goal. Finally, show that deriving estimates such system presents significant challenge for systems.

参考文章(16)
Dushyanth Narayanan, End-to-end tracing considered essential ,(2005)
Jim Gray, Benchmark Handbook: For Database and Transaction Processing Systems Morgan Kaufmann Publishers Inc.. ,(1992)
Pedro DeRose, Mayssam Sayyadian, Raghu Ramakrishnan, Yoonkyong Lee, AnHai Doan, Warren Shen, Robert McCann, Fei Chen, Community Information Management. IEEE Data(base) Engineering Bulletin. ,vol. 29, pp. 64- 72 ,(2006)
Richard Mortier, Rebecca Isaacs, Austin Donnelly, Paul Barham, Using magpie for request extraction and workload modelling operating systems design and implementation. pp. 18- 18 ,(2004)
Hamish Cunningham, Information Extraction - A User Guide arXiv: Computation and Language. ,(1997)
Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek Narasayya, Manoj Syamala, Database Tuning Advisor for Microsoft SQL Server 2005 very large data bases. pp. 1110- 1121 ,(2004) , 10.1016/B978-012088469-8.50097-8
Mark Berler, Jeff Eastman, David Jordan, Craig Russell, Olaf Schadow, Torsten Stanienda, Fernando Velez, None, The object data standard: ODMG 3.0 Morgan Kaufmann Publishers Inc.. ,(2000)
Norbert Fuhr, Thomas Rölleke, A probabilistic relational algebra for the integration of information retrieval and database systems ACM Transactions on Information Systems. ,vol. 15, pp. 32- 66 ,(1997) , 10.1145/239041.239045
Nanda Kambhatla, Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations meeting of the association for computational linguistics. pp. 22- ,(2004) , 10.3115/1219044.1219066
Nilesh Dalvi, Dan Suciu, Efficient query evaluation on probabilistic databases very large data bases. ,vol. 16, pp. 523- 544 ,(2004) , 10.1007/S00778-006-0004-3