Naïve Bayes Ant Colony Optimization for Experimental Design

作者: Matteo Borrotti , Irene Poli

DOI: 10.1007/978-3-642-33042-1_52

关键词:

摘要: In a large number of experimental problems the high dimensionality search space and economical constraints can severely limit experiment points that be tested. Under this constraints, optimization techniques perform poorly in particular when little priori knowledge is available. work we investigate possibility combining approaches from advanced statistics algorithms to effectively explore combinatorial sampling limited points. To purpose propose Naive Bayes Ant Colony Optimization (NACO) procedure. We tested its performance simulation study.

参考文章(7)
Jukka Kohonen, Sarish Talikota, Jukka Corander, Petri Auvinen, Elja Arjas, A Naive Bayes classifier for protein function prediction. in Silico Biology. ,vol. 9, pp. 23- 34 ,(2009) , 10.3233/ISB-2009-0382
Matteo Borrotti, Davide De Lucrezia, Giovanni Minervini, Irene Poli, A model based ant colony design for the protein engineering problem international conference on swarm intelligence. ,vol. 6234, pp. 352- 359 ,(2010) , 10.1007/978-3-642-15461-4_31
Gianni Di Caro, Marco Dorigo, The ant colony optimization meta-heuristic New ideas in optimization. pp. 11- 32 ,(1999)
Thomas Stützle, Holger H. Hoos, – Ant System Future Generation Computer Systems. ,vol. 16, pp. 889- 914 ,(2000) , 10.1016/S0167-739X(00)00043-1