Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization

作者: S. Sundhar Ram , A. Nedić , V. V. Veeravalli

DOI: 10.1007/S10957-010-9737-7

关键词:

摘要: … To solve the problem in (2.1) with its inherent decentralized information access, we consider an iterative subgradient method. The … We next estimate the norms of the vectors pi,k …

参考文章(39)
John N Tsitsiklis, PROBLEMS IN DECENTRALIZED DECISION MAKING AND COMPUTATION National Documentation Centre (EKT). ,(1984) , 10.12681/EADD/3778
M. V. Solodov, S. K. Zavriev, Error Stability Properties of Generalized Gradient-Type Algorithms Journal of Optimization Theory and Applications. ,vol. 98, pp. 663- 680 ,(1998) , 10.1023/A:1022680114518
Ilan Lobel, Asuman Ozdaglar, Convergence analysis of distributed subgradient methods over random networks allerton conference on communication, control, and computing. pp. 353- 360 ,(2008) , 10.1109/ALLERTON.2008.4797579
Angelia Nedić, Asuman Ozdaglar, Cooperative distributed multi-agent optimization Convex Optimization in Signal Processing and Communications. pp. 340- 386 ,(2009) , 10.1017/CBO9780511804458.011
Boris T Poljak, Introduction to optimization Optimization Software, Publications Division. ,(1987)
Angelia Nedić, Dimitri Bertsekas, Convergence Rate of Incremental Subgradient Algorithms Springer, Boston, MA. pp. 223- 264 ,(2001) , 10.1007/978-1-4757-6594-6_11
Angelia Nedić, Asuman E. Ozdaglar, Dimitri P. Bertsekas, Convex Analysis and Optimization ,(2003)
P. M. Pardalos, Mauricio G. C. Resende, Handbook of applied optimization Oxford University Press. ,(2002)
John N. Tsitsiklis, Dimitri P. Bertsekas, Parallel and Distributed Computation: Numerical Methods ,(1989)