Asymptotic study of eigenelements of a sequence of random selfadjoint operators

作者: Gbete Simplice dossou , Pousse A

DOI: 10.1080/02331889108802329

关键词:

摘要: When (Tn) is a sequence of selfadjoint random operators on separable Hilbert space H converging almost surely to T, and converges in distribution operator U, we give explicitly the asymptotic joint all eigenelements Tn (eigenvalues, eigenvectors eigenprojectors) as function U. The results are obtained for real or complex operators, eigenvalues which arc simple not. They have many applications Multi-variate Analysis; example, studies Principal Component Analysis (real complex), Canonical Analysis, Discriminant Correspondence Functional models.

参考文章(18)
William J Glynn, Robb J Muirhead, Inference in canonical correlation analysis Journal of Multivariate Analysis. ,vol. 8, pp. 468- 478 ,(1978) , 10.1016/0047-259X(78)90067-2
Robb J. Muirhead, Latent Roots and Matrix Variates: A Review of Some Asymptotic Results Annals of Statistics. ,vol. 6, pp. 5- 33 ,(1978) , 10.1214/AOS/1176344063
CHRISTINE M. WATERNAUX, Asymptotic distribution of the sample roots for a nonnormal population Biometrika. ,vol. 63, pp. 639- 645 ,(1976) , 10.1093/BIOMET/63.3.639