Equilibrium States of the Ising Model in the Two-Phase Region

作者: G. Gallavotti , S. Miracle-Solé

DOI: 10.1103/PHYSREVB.5.2555

关键词:

摘要: We prove that at low enough temperature all translationally invariant equilibrium states for the Ising ferromagnet are a superposition of only two extremal states, i.e., positively and negatively magnetized pure phases. In particular this proves, in dimensions, identity spontaneous magnetization Onsager's value ${M}_{0}={[1\ensuremath{-}{(sh\ensuremath{\beta})}^{\ensuremath{-}4}]}^{\frac{1}{8}}$.

参考文章(6)
O. E. Lanford, D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics Communications in Mathematical Physics. ,vol. 13, pp. 194- 215 ,(1969) , 10.1007/BF01645487
Robert B. Griffiths, Spontaneous Magnetization in Idealized Ferromagnets Physical Review. ,vol. 152, pp. 240- 246 ,(1966) , 10.1103/PHYSREV.152.240
G. Gallavotti, Boundary conditions and correlation functions in the ν-dimensional Ising model at low temperature Communications in Mathematical Physics. ,vol. 23, pp. 275- 284 ,(1971) , 10.1007/BF01893617
T. D. SCHULTZ, D. C. MATTIS, E. H. LIEB, Two-Dimensional Ising Model as a Soluble Problem of Many Fermions Reviews of Modern Physics. ,vol. 36, pp. 856- 871 ,(1964) , 10.1103/REVMODPHYS.36.856
G. G. Emch, H. J. F. Knops, E. J. Verboven, On partial weakly clustering states with an application to the Ising model Communications in Mathematical Physics. ,vol. 8, pp. 300- 314 ,(1968) , 10.1007/BF01646270
Michael E. Fisher, Critical Temperatures of Anisotropic Ising Lattices. II. General Upper Bounds Physical Review. ,vol. 162, pp. 480- 485 ,(1967) , 10.1103/PHYSREV.162.480