FAME, the Flux Analysis and Modeling Environment

作者: Joost Boele , Brett G Olivier , Bas Teusink

DOI: 10.1186/1752-0509-6-8

关键词:

摘要: Background: The creation and modification of genome-scale metabolic models is a task that requires specialized software tools. While these are available, subsequently running or visualizing model often relies on disjoint code, which adds additional actions to the analysis routine and, in our experience, renders applications suboptimal for use by (systems) biologists. Results: Flux Analysis Modeling Environment (FAME) first web-based modeling tool combines tasks creating, editing, running, analyzing/visualizing stoichiometric into single program. results can be automatically superimposed familiar KEGG-like maps. FAME written PHP uses Python-based PySCeS-CBM its linear solving capabilities. It comes with comprehensive manual quick-start tutorial, accessed online at http://f-a-m-e.org/. Conclusions: With FAME, we present community an open source, user-friendly, “one stop shop” modeling. We expect application will substantial investigators educators alike.

参考文章(16)
Masaru Tomita, Nobuaki Kono, Kazuharu Arakawa, MEGU: Pathway Mapping Web-Service Based on KEGG and SVG in Silico Biology. ,vol. 6, pp. 621- 625 ,(2006)
Natalie C Duarte, Markus J Herrgård, Bernhard Ø Palsson, None, Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model Genome Research. ,vol. 14, pp. 1298- 1309 ,(2004) , 10.1101/GR.2250904
Jan Schellenberger, Junyoung O Park, Tom M Conrad, Bernhard Ø Palsson, BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics. ,vol. 11, pp. 213- 213 ,(2010) , 10.1186/1471-2105-11-213
Matthew A Oberhardt, Bernhard Ø Palsson, Jason A Papin, Applications of genome-scale metabolic reconstructions Molecular Systems Biology. ,vol. 5, pp. 320- 320 ,(2009) , 10.1038/MSB.2009.77
M. Cvijovic, R. Olivares-Hernandez, R. Agren, N. Dahr, W. Vongsangnak, I. Nookaew, K. R. Patil, J. Nielsen, BioMet Toolbox: genome-wide analysis of metabolism Nucleic Acids Research. ,vol. 38, pp. 144- 149 ,(2010) , 10.1093/NAR/GKQ404
Christopher S Henry, Matthew DeJongh, Aaron A Best, Paul M Frybarger, Ben Linsay, Rick L Stevens, High-throughput generation, optimization and analysis of genome-scale metabolic models Nature Biotechnology. ,vol. 28, pp. 977- 982 ,(2010) , 10.1038/NBT.1672
Daniel Segre, Dennis Vitkup, George M Church, Analysis of optimality in natural and perturbed metabolic networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 15112- 15117 ,(2002) , 10.1073/PNAS.232349399
Akira Funahashi, Mineo Morohashi, Hiroaki Kitano, Naoki Tanimura, CellDesigner: a process diagram editor for gene-regulatory and biochemical networks BIOSILICO. ,vol. 1, pp. 159- 162 ,(2003) , 10.1016/S1478-5382(03)02370-9
Steffen Klamt, Julio Saez-Rodriguez, Ernst D Gilles, Structural and functional analysis of cellular networks with CellNetAnalyzer BMC Systems Biology. ,vol. 1, pp. 2- 2 ,(2007) , 10.1186/1752-0509-1-2
Roland Schwarz, Chunguang Liang, Christoph Kaleta, Mark Kühnel, Eik Hoffmann, Sergei Kuznetsov, Michael Hecker, Gareth Griffiths, Stefan Schuster, Thomas Dandekar, Integrated network reconstruction, visualization and analysis using YANAsquare BMC Bioinformatics. ,vol. 8, pp. 313- 313 ,(2007) , 10.1186/1471-2105-8-313