Global Stability of Malaria Transmission Dynamics Model with Logistic Growth

作者: Abadi Abay Gebremeskel

DOI: 10.1155/2018/5759834

关键词:

摘要: Mathematical models become an important and popular tools to understand the dynamics of disease give insight reduce impact malaria burden within community. Thus, this paper aims apply a mathematical model study global stability transmission with logistic growth. Analysis applies scaling sensitivity analysis applied parameters in prevalence disease. We derive equilibrium points investigated their stabilities. The results our have shown that if , then disease-free is globally asymptotically stable, dies out; unique endemic point stable persists population. Furthermore, numerical simulations application showed abrupt periodic variations.

参考文章(19)
Frédéric Darriet, Fabrice Chandre, Sylvie Manguin, Pierre Guillet, Cécile Brengues, Pierre Carnevale, Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Côte d'Ivoire. Journal of The American Mosquito Control Association. ,vol. 15, pp. 53- 59 ,(1999)
Xiaomei Feng, Shigui Ruan, Zhidong Teng, Kai Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China. Bellman Prize in Mathematical Biosciences. ,vol. 266, pp. 52- 64 ,(2015) , 10.1016/J.MBS.2015.05.005
G. Covell, EPIDEMIOLOGY AND CONTROL OF MALARIA BMJ. ,vol. 2, pp. 1477- 1477 ,(1957) , 10.1136/BMJ.2.5059.1477
C. G. Nevill, E. S. Some, V. O. Mung'ala, W. Muterni, L. New, K. Marsh, C. Lengeler, R. W. Snow, Insecticide‐treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast Tropical Medicine & International Health. ,vol. 1, pp. 139- 146 ,(2007) , 10.1111/J.1365-3156.1996.TB00019.X
Muhammad Altaf Khan, Saeed Islam, Sher Afzal Khan, Gul Zaman, Global Stability of Vector-Host Disease with Variable Population Size BioMed Research International. ,vol. 2013, pp. 710917- 710917 ,(2013) , 10.1155/2013/710917
G.A Ngwa, W.S Shu, A mathematical model for endemic malaria with variable human and mosquito populations Mathematical and Computer Modelling. ,vol. 32, pp. 747- 763 ,(2000) , 10.1016/S0895-7177(00)00169-2
J. Tumwiine, J.Y.T. Mugisha, L.S. Luboobi, A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity Applied Mathematics and Computation. ,vol. 189, pp. 1953- 1965 ,(2007) , 10.1016/J.AMC.2006.12.084
Nakul Chitnis, James M. Hyman, Jim M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology. ,vol. 70, pp. 1272- 1296 ,(2008) , 10.1007/S11538-008-9299-0
Abadi Abay Gebremeskel, Harald Elias Krogstad, Mathematical Modelling of Endemic Malaria Transmission American Journal of Applied Mathematics. ,vol. 3, pp. 36- ,(2015) , 10.11648/J.AJAM.20150302.12
P. van den Driessche, James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Bellman Prize in Mathematical Biosciences. ,vol. 180, pp. 29- 48 ,(2002) , 10.1016/S0025-5564(02)00108-6