Numerical computation of steep gravity waves in shallow water

作者: J.-M. Vanden-Broeck , L. W. Schwartz

DOI: 10.1063/1.862492

关键词:

摘要: An efficient numerical scheme to compute steep gravity waves in water of shallow uniform depth is described. The problem formulated as a system integrodifferential equations for the free surface. A procedure based on Newton’s iterations devised solve these equations. Solutions high accuracy small 1/120 wavelength are presented. Numerical confirmation obtained existence maxima potential and kinetic energies functions steepness.

参考文章(6)
Leonard W. Schwartz, COMPUTER EXTENSION AND ANALYTIC CONTINUATION OF STOKES EXPANSION FOR GRAVITY WAVES Journal of Fluid Mechanics. ,vol. 62, pp. 553- 578 ,(1974) , 10.1017/S0022112074000802
M. S. Longuet-Higgins, M. J. H. Fox, Theory of the almost-highest wave. Part 2. Matching and analytic extension Journal of Fluid Mechanics. ,vol. 85, pp. 769- 786 ,(1978) , 10.1017/S0022112078000920
Steep gravity waves in water of arbitrary uniform depth Philosophical Transactions of the Royal Society A. ,vol. 286, pp. 183- 230 ,(1977) , 10.1098/RSTA.1977.0113
On the Speed and Profile of Steep Solitary Waves Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 350, pp. 175- 189 ,(1976) , 10.1098/RSPA.1976.0102
On the Mass, Momentum, Energy and Circulation of a Solitary Wave. II Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 340, pp. 471- 493 ,(1974) , 10.1098/RSPA.1974.0166
Integral properties of periodic gravity waves of finite amplitude Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 342, pp. 157- 174 ,(1975) , 10.1098/RSPA.1975.0018