How many templates does it take for a good segmentation?: error analysis in multiatlas segmentation as a function of database size

作者: Suyash P. Awate , Peihong Zhu , Ross T. Whitaker

DOI: 10.1007/978-3-642-33530-3_9

关键词:

摘要: This paper proposes a novel formulation to model and analyze the statistical characteristics of some types segmentation problems that are based on combining label maps / templates atlases. Such segmentation-by-example approaches quite powerful their own for several clinical applications they provide prior information, through spatial context, when combined with intensity-based methods. The proposed models class multiatlas as nonparametric regression in high-dimensional space images. presents systematic analysis estimation's convergence behavior (i.e. characterizing error function size database) shows it has specific analytic form involving parameters fundamental problem chosen anatomical structure, imaging modality, registration method, label-fusion algorithm, etc.). We describe how estimate these show brain structures exhibit trends determined analytically. framework also provides per-voxel confidence measures segmentation. large database sizes can be predicted using small-sized databases. Thus, small databases exploited predict required ("how many templates") achieve "good" segmentations having errors lower than specified tolerance. cost-benefit is crucial designing deploying systems.

参考文章(20)
Mattias P. Heinrich, Mark Jenkinson, Manav Bhushan, Tahreema Matin, Fergus V. Gleeson, J. Michael Brady, Julia A. Schnabel, Non-local Shape Descriptor: A New Similarity Metric for Deformable Multi-modal Registration Lecture Notes in Computer Science. ,vol. 14, pp. 541- 548 ,(2011) , 10.1007/978-3-642-23629-7_66
Michal Depa, Mert R. Sabuncu, Godtfred Holmvang, Reza Nezafat, Ehud J. Schmidt, Polina Golland, Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation STACOM'10/CESC'10 Proceedings of the First international conference on Statistical atlases and computational models of the heart, and international conference on Cardiac electrophysiological simulation challenge. ,vol. 6364, pp. 85- 94 ,(2010) , 10.1007/978-3-642-15835-3_9
Hongzhi Wang, Jung Wook Suh, Sandhitsu Das, John Pluta, Murat Altinay, Paul Yushkevich, Regression-based label fusion for multi-atlas segmentation computer vision and pattern recognition. pp. 1113- 1120 ,(2011) , 10.1109/CVPR.2011.5995382
Y. P. Mack, Local Properties of k-NN Regression Estimates Siam Journal on Algebraic and Discrete Methods. ,vol. 2, pp. 311- 323 ,(1981) , 10.1137/0602035
P. Aljabar, R.A. Heckemann, A. Hammers, J.V. Hajnal, D. Rueckert, Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy NeuroImage. ,vol. 46, pp. 726- 738 ,(2009) , 10.1016/J.NEUROIMAGE.2009.02.018
Michael Felsberg, Sinan Kalkan, Norbert Krüger, Continuous dimensionality characterization of image structures Image and Vision Computing. ,vol. 27, pp. 628- 636 ,(2009) , 10.1016/J.IMAVIS.2008.06.018
Jyrki MP Lötjönen, Robin Wolz, Juha R Koikkalainen, Lennart Thurfjell, Gunhild Waldemar, Hilkka Soininen, Daniel Rueckert, Alzheimer's Disease Neuroimaging Initiative, Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage. ,vol. 49, pp. 2352- 2365 ,(2010) , 10.1016/J.NEUROIMAGE.2009.10.026
Wolfgang Hrdle, Applied Nonparametric Regression ,(1990)
P. Thomas Fletcher, Sarang Joshi, Jens Krüger, Linh K. Ha, Cláudio T. Silva, Fast parallel unbiased diffeomorphic atlas construction on multi-graphics processing units eurographics workshop on parallel graphics and visualization. pp. 41- 48 ,(2009) , 10.2312/EGPGV/EGPGV09/041-048
Matthias Hein, Jean-Yves Audibert, Intrinsic dimensionality estimation of submanifolds in Rd Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 289- 296 ,(2005) , 10.1145/1102351.1102388