Comparison of different interpolation methods and sequential Gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans.

作者: Sabrine Metahni , Lucie Coudert , Erwan Gloaguen , Karima Guemiza , Guy Mercier

DOI: 10.1016/J.ENVPOL.2019.05.122

关键词:

摘要: Understanding the spatial distribution of organic and/or inorganic contaminants is crucial to facilitate decision-making rehabilitation strategies in order ensure most appropriate management contaminated sites terms contaminant removals efficiencies and operating costs. For these reasons, various interpolation methods [Thiessen Polygon (TP) method, inverse distance (IDW) ordinary kriging (OK), as well sequential Gaussian simulations (SGS)] were used better understand As, Cr, Cu, pentachlorophenol (PCP) dioxins furans (PCDD/F) found onto a specific industrial site. These do not only vary complexity efficiency but also lead different results when using values coming from same characterization campaign. Therefore, it often necessary evaluate their relevance by performing comparative analysis. The showed that (OK) was estimator mean more advanced compared two other (TP IDW). However, appeared SGS has power than OK permitted calculate reliable value probabilities exceeding regulatory cut-offs contamination.

参考文章(43)
Michel Bobbia, Valérie Pernelet, Chris Roth, L'intégration des informations indirectes à la cartographie géostatistique des polluants Pollution atmosphérique. ,vol. 43, pp. 251- 262 ,(2001) , 10.4267/POLLUTION-ATMOSPHERIQUE.2757
Geoffrey Lespagnol, Lixiviation du Chrome, du Cuivre et de l'Arsenic (CCA) à partir de sols contaminés sur des sites de traitement du bois Ecole Nationale Supérieure des Mines de Saint-Etienne. ,(2003)
A. N. Kravchenko, Influence of Spatial Structure on Accuracy of Interpolation Methods Soil Science Society of America Journal. ,vol. 67, pp. 1564- 1571 ,(2003) , 10.2136/SSSAJ2003.1564
Masoomeh Delbari, Peyman Afrasiab, Willibald Loiskandl, Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content Catena. ,vol. 79, pp. 163- 169 ,(2009) , 10.1016/J.CATENA.2009.08.001
Hoehun Ha, James R. Olson, Ling Bian, Peter A. Rogerson, Analysis of Heavy Metal Sources in Soil Using Kriging Interpolation on Principal Components Environmental Science & Technology. ,vol. 48, pp. 4999- 5007 ,(2014) , 10.1021/ES405083F
Jaroslaw Zawadzki, Piotr Fabijanczyk, The geostatistical reassessment of soil contamination with lead in metropolitan Warsaw and its vicinity International Journal of Environment and Pollution. ,vol. 35, pp. 1- 12 ,(2008) , 10.1504/IJEP.2008.021127
A Facchinelli, E Sacchi, L Mallen, Multivariate statistical and GIS-based approach to identify heavy metal sources in soils Environmental Pollution. ,vol. 114, pp. 313- 324 ,(2001) , 10.1016/S0269-7491(00)00243-8
T. G. Mueller, N. B. Pusuluri, K. K. Mathias, P. L. Cornelius, R. I. Barnhisel, S. A. Shearer, Map Quality for Ordinary Kriging and Inverse Distance Weighted Interpolation Soil Science Society of America Journal. ,vol. 68, pp. 2042- 2047 ,(2004) , 10.2136/SSSAJ2004.2042
S. Henriksson, J. Hagberg, M. Bäckström, I. Persson, G. Lindström, Assessment of PCDD/Fs levels in soil at a contaminated sawmill site in Sweden – A GIS and PCA approach to interpret the contamination pattern and distribution Environmental Pollution. ,vol. 180, pp. 19- 26 ,(2013) , 10.1016/J.ENVPOL.2013.05.002
Yunfeng Xie, Tong-bin Chen, Mei Lei, Jun Yang, Qing-jun Guo, Bo Song, Xiao-yong Zhou, Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere. ,vol. 82, pp. 468- 476 ,(2011) , 10.1016/J.CHEMOSPHERE.2010.09.053