Improving the efficiency of layered perovskite cathodes by microstructural optimization

作者: L. dos Santos-Gómez , J. M. Porras-Vázquez , E. R. Losilla , D. Marrero-López

DOI: 10.1039/C6TA10946B

关键词:

摘要: Low-temperature solid oxide fuel cells require the use of cathodes with improved performance. In this context, microstructural optimization is fundamental in order to obtain more efficient and stable materials. However, most current fabrication techniques involve multiple steps therefore they are not suitable for industrial applications. This report describes alternative strategies prepare PrBaCo2O5+δ (PBC) by using a simple economic spray-pyrolysis deposition (SP) method. Three different electrode configurations have been tested: (i) PBC prepared on dense CGO pellets, (ii) deposited onto porous backbone layers (iii) submicrometric powders from freeze-dried precursors screen-printing process. The second approach an traditional wet infiltration method number advantages, such as shorter preparation time simplicity implementation at scale. Reduced values polarization resistance (Rp) obtained 600 °C, 0.027 Ω cm2 SP electrodes backbones, comparison 0.22 powder screen-printing. Moreover, demonstrate stability Rp 650 °C over time. A Ni–CGO anode-supported cell cathode achieves remarkable peak power density 0.95 W cm−2 0.6 screen-printed cathode.

参考文章(66)
Renato Pelosato, Giulio Cordaro, Davide Stucchi, Cinzia Cristiani, Giovanni Dotelli, Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review Journal of Power Sources. ,vol. 298, pp. 46- 67 ,(2015) , 10.1016/J.JPOWSOUR.2015.08.034
R. K. Sharma, M. Burriel, E. Djurado, La4Ni3O10−δ as an efficient solid oxide fuel cell cathode: electrochemical properties versus microstructure Journal of Materials Chemistry. ,vol. 3, pp. 23833- 23843 ,(2015) , 10.1039/C5TA07862H
Jingping Wang, Fuchang Meng, Tian Xia, Zhan Shi, Jie Lian, Chunbo Xu, Hui Zhao, Jean-Marc Bassat, Jean-Claude Grenier, Superior electrochemical performance and oxygen reduction kinetics of layered perovskite PrBaxCo2O5+δ (x = 0.90–1.0) oxides as cathode materials for intermediate-temperature solid oxide fuel cells International Journal of Hydrogen Energy. ,vol. 39, pp. 18392- 18404 ,(2014) , 10.1016/J.IJHYDENE.2014.09.041
E. D. Wachsman, K. T. Lee, Lowering the Temperature of Solid Oxide Fuel Cells Science. ,vol. 334, pp. 935- 939 ,(2011) , 10.1126/SCIENCE.1204090
Thomas L. Cable, Stephen W. Sofie, A symmetrical, planar SOFC design for NASA's high specific power density requirements Journal of Power Sources. ,vol. 174, pp. 221- 227 ,(2007) , 10.1016/J.JPOWSOUR.2007.08.110
T. Z. Sholklapper, H. Kurokawa, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Nanostructured Solid Oxide Fuel Cell Electrodes Nano Letters. ,vol. 7, pp. 2136- 2141 ,(2007) , 10.1021/NL071007I
Dong Ding, Xiaxi Li, Samson Yuxiu Lai, Kirk Gerdes, Meilin Liu, Enhancing SOFC cathode performance by surface modification through infiltration Energy and Environmental Science. ,vol. 7, pp. 552- 575 ,(2014) , 10.1039/C3EE42926A
Jeffrey W. Fergus, Electrolytes for solid oxide fuel cells Journal of Power Sources. ,vol. 162, pp. 30- 40 ,(2006) , 10.1016/J.JPOWSOUR.2006.06.062
D Marrero-López, R Romero, F Martín, JR Ramos-Barrado, None, Effect of the deposition temperature on the electrochemical properties of La0.6Sr0.4Co0.8Fe0.2O3−δ cathode prepared by conventional spray-pyrolysis Journal of Power Sources. ,vol. 255, pp. 308- 317 ,(2014) , 10.1016/J.JPOWSOUR.2014.01.021
A. Princivalle, D. Perednis, R. Neagu, E. Djurado, Microstructural Investigations of Nanostructured La(Sr)MnO3-δ Films Deposited by Electrostatic Spray Deposition Chemistry of Materials. ,vol. 16, pp. 3733- 3739 ,(2004) , 10.1021/CM049158Z