Comparative Advantages of Novel Algorithms Using MSR Threshold and MSR Difference Threshold for Biclustering Gene Expression Data

作者: Shyama Das , Sumam Mary Idicula , None

DOI: 10.1007/978-1-4419-7046-6_13

关键词:

摘要: The goal of biclustering in gene expression data matrix is to find a submatrix such that the genes show highly correlated activities across all conditions submatrix. A measure called mean squared residue (MSR) used simultaneously evaluate coherence rows and columns within MSR difference incremental increase when or condition added bicluster. In this chapter, three algorithms using threshold (MSRT) (MSRDT) are experimented compared. All these methods use seeds generated from K-Means clustering algorithm. Then enlarged by adding more conditions. first algorithm makes MSRT alone. Both second third make newly introduced concept MSRDT. Highly coherent biclusters obtained concept. algorithm, different method calculate results on bench mark datasets prove better than many metaheuristic algorithms.

参考文章(11)
George M. Church, Yizong Cheng, Biclustering of Expression Data intelligent systems in molecular biology. ,vol. 8, pp. 93- 103 ,(2000)
Sushmita Mitra, Haider Banka, Multi-objective evolutionary biclustering of gene expression data Pattern Recognition. ,vol. 39, pp. 2464- 2477 ,(2006) , 10.1016/J.PATCOG.2006.03.003
Shyama Das, Sumam Mary Idicula, Biclustering Gene Expression Data Using MSR Difference Threshold ieee india conference. pp. 1- 4 ,(2009) , 10.1109/INDCON.2009.5409395
A. Chakraborty, H. Maka, Biclustering of Gene Expression Data Using Genetic Algorithm computational intelligence in bioinformatics and computational biology. pp. 1- 8 ,(2005) , 10.1109/CIBCB.2005.1594893
Zonghong Zhang, A. Teo, Beng Chin Ooi, Kian-Lee Tan, Mining deterministic biclusters in gene expression data bioinformatics and bioengineering. pp. 283- 290 ,(2004) , 10.1109/BIBE.2004.1317355
Shyama Das, Sumam Mary Idicula, Iterative Search with Incremental MSR Difference Threshold for Biclustering Gene Expression Data International Journal of Computer Applications. ,vol. 1, pp. 38- 46 ,(2010) , 10.5120/385-576
Junwan Liu, Zhoujun Li, Feifei Liu, Yiming Chen, None, Multi-objective Particle Swarm Optimization Biclustering of Microarray Data bioinformatics and biomedicine. pp. 363- 366 ,(2008) , 10.1109/BIBM.2008.17
F. Divina, J.S. Aguilar-Ruiz, Biclustering of expression data with evolutionary computation IEEE Transactions on Knowledge and Data Engineering. ,vol. 18, pp. 590- 602 ,(2006) , 10.1109/TKDE.2006.74
Saeed Tavazoie, Jason D. Hughes, Michael J. Campbell, Raymond J. Cho, George M. Church, Systematic determination of genetic network architecture Nature Genetics. ,vol. 22, pp. 281- 285 ,(1999) , 10.1038/10343
Jiong Yang, Haixun Wang, Wei Wang, P. Yu, Enhanced biclustering on expression data bioinformatics and bioengineering. pp. 321- 327 ,(2003) , 10.1109/BIBE.2003.1188969