A criterion for the existence of Killing vectors in 3D

作者: Boris Kruglikov , Kentaro Tomoda

DOI: 10.1088/1361-6382/AAD11D

关键词:

摘要: A three-dimensional Riemannian manifold has locally 6, 4, 3, 2, 1 or none independent Killing vectors. We present an explicit algorithm for computing dimension of the infinitesimal isometry algebra. It branches according to values curvature invariants. These are relative differential invariants computed via curvature, but they not scalar polynomial Weyl compare our obstructions existence vectors with known criteria due Singer, Kerr and others.

参考文章(16)
Hermann Weyl, The Classical Groups ,(1939)
Friedbert Prüfer, Franco Tricerri, Lieven Vanhecke, Curvature invariants, differential operators and local homogeneity Transactions of the American Mathematical Society. ,vol. 348, pp. 4643- 4652 ,(1996) , 10.1090/S0002-9947-96-01686-8
David M. Zipoy, Topology of Some Spheroidal Metrics Journal of Mathematical Physics. ,vol. 7, pp. 1137- 1143 ,(1966) , 10.1063/1.1705005
Sergio Console, Carlos Olmos, Curvature invariants, Killing vector fields, connections and cohomogeneity Proceedings of the American Mathematical Society. ,vol. 137, pp. 1069- 1072 ,(2008) , 10.1090/S0002-9939-08-09669-X
Boris Kruglikov, Invariant characterization of Liouville metrics and polynomial integrals Journal of Geometry and Physics. ,vol. 58, pp. 979- 995 ,(2008) , 10.1016/J.GEOMPHYS.2008.03.005
A Coley, R Milson, V Pravda, A Pravdová, Vanishing scalar invariant spacetimes in higher dimensions Classical and Quantum Gravity. ,vol. 21, pp. 5519- 5542 ,(2004) , 10.1088/0264-9381/21/23/014
I. M. Singer, Infinitesimally homogeneous spaces Communications on Pure and Applied Mathematics. ,vol. 13, pp. 685- 697 ,(1960) , 10.1002/CPA.3160130408
I. Hauser, R. J. Malhiot, Structural equations for Killing tensors of order two. I Journal of Mathematical Physics. ,vol. 16, pp. 150- 152 ,(1975) , 10.1063/1.522407
Andreas Koutras, Colin McIntosh, A metric with no symmetries or invariants Classical and Quantum Gravity. ,vol. 13, ,(1996) , 10.1088/0264-9381/13/5/002