ON THE SYMMETRY AND UNIQUENESS OF SOLUTIONS OF THE GINZBURG–LANDAU EQUATIONS FOR SMALL DOMAINS

作者: A. AFTALION , E. N. DANCER

DOI: 10.1142/S0219199701000275

关键词:

摘要: In this paper, we study the Ginzburg–Landau equations for a two dimensional domain which has small size. We prove that if is small, then solution no zero, vortex. More precisely, show order parameter Ψ almost constant. Additionnally, obtain disc of radius, any non normal symmetric and unique. Then, in case slab, one domain, use same method to derive solutions are symmetric. The proofs priori estimates Poincare inequality.

参考文章(11)
Haïm Brezis, Tatsien Li, Ginzburg-Landau Vortices ,(1994)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Amandine Aftalion, William C. Troy, On the solutions of the one-dimensional Ginzburg-Landau equations for superconductivity Physica D: Nonlinear Phenomena. ,vol. 132, pp. 214- 232 ,(1999) , 10.1016/S0167-2789(99)00026-3
B. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related properties via the maximum principle Communications in Mathematical Physics. ,vol. 68, pp. 209- 243 ,(1979) , 10.1007/BF01221125
Michael Tinkham, Introduction to Superconductivity ,(1975)
Qiang Du, Max D. Gunzburger, Janet S. Peterson, Analysis and Approximation of the Ginzburg–Landau Model of Superconductivity SIAM Review. ,vol. 34, pp. 54- 81 ,(1992) , 10.1137/1034003
T. Giorgi, D. Phillips, The Breakdown of Superconductivity Due to Strong Fields for the Ginzburg--Landau Model SIAM Journal on Mathematical Analysis. ,vol. 30, pp. 341- 359 ,(1999) , 10.1137/S0036141097323163
Stan Alama, Lia Bronsard, Tiziana Giorgi, None, Uniqueness of Symmetric Vortex Solutions in the Ginzburg–Landau Model of Superconductivity Journal of Functional Analysis. ,vol. 167, pp. 399- 424 ,(1999) , 10.1006/JFAN.1999.3447
Étienne Sandier, Sylvia Serfaty, A rigorous derivation of a free-boundary problem arising in superconductivity Annales Scientifiques De L Ecole Normale Superieure. ,vol. 33, pp. 561- 592 ,(2000) , 10.1016/S0012-9593(00)00122-1
Catherine Bolley, Bernard Helffer, Stability of Bifurcating Solutions for the Ginzburg-Landau Equations Reviews in Mathematical Physics. ,vol. 10, pp. 579- 626 ,(1998) , 10.1142/S0129055X98000197