Molecular translational-rovibronic hamiltonian. I. Non-linear molecules

作者: Reza Islampour , Michael Kasha

DOI: 10.1016/0301-0104(83)80008-1

关键词:

摘要: Abstract The translational-rovibronic hamiltonian for a non-linear polyatomic molecule is derived by using the Schrodinger equation in tensor form and employing Eckart conditions (determining nuclear-framework rotational variables). present derivation unified comprehensive one quantum-mechanical pathway contrasts with fragmentary previous derivations via classical-intermediate path. method presented affords firm conceptual picture of nature transformation origin coupling terms, avoids mathematical complexities their residue obscurity. correct total angular momentum operators also quantum mechanically.

参考文章(11)
Harald H. Nielsen, The Vibration-Rotation Energies of Molecules Reviews of Modern Physics. ,vol. 23, pp. 90- 136 ,(1951) , 10.1103/REVMODPHYS.23.90
E. Bright Wilson, J. B. Howard, The Vibration‐Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules The Journal of Chemical Physics. ,vol. 4, pp. 260- 268 ,(1936) , 10.1063/1.1749833
James K.G. Watson, The vibration-rotation hamiltonian of linear molecules Molecular Physics. ,vol. 19, pp. 465- 487 ,(1970) , 10.1080/00268977000101491
Aaron Sayvetz, The Kinetic Energy of Polyatomic Molecules Journal of Chemical Physics. ,vol. 7, pp. 383- 389 ,(1939) , 10.1063/1.1750455
Janet Hawkins Meal, S. R. Polo, Vibration—Rotation Interaction in Polyatomic Molecules. I. The Zeta Matrices The Journal of Chemical Physics. ,vol. 24, pp. 1119- 1125 ,(1956) , 10.1063/1.1742728
James K.G. Watson, Simplification of the molecular vibration-rotation hamiltonian Molecular Physics. ,vol. 15, pp. 479- 490 ,(1968) , 10.1080/00268976800101381
B.J. Howard, R.E. Moss, The molecular hamiltonian: I. Non-linear molecules Molecular Physics. ,vol. 19, pp. 433- 450 ,(1970) , 10.1080/00268977000101471
Byron T. Darling, David M. Dennison, The Water Vapor Molecule Physical Review. ,vol. 57, pp. 128- 139 ,(1940) , 10.1103/PHYSREV.57.128