Topological Switch between Second-Order Topological Insulators and Topological Crystalline Insulators

作者: Motohiko Ezawa

DOI: 10.1103/PHYSREVLETT.121.116801

关键词:

摘要: … topological switch between second-order topological insulators (SOTIs) and topological crystalline insulators … , for which we define the bulk topological numbers of the same type. When …

参考文章(28)
M. Sitte, A. Rosch, E. Altman, L. Fritz, Topological insulators in magnetic fields: quantum Hall effect and edge channels with a nonquantized θ term. Physical Review Letters. ,vol. 108, pp. 126807- 126807 ,(2012) , 10.1103/PHYSREVLETT.108.126807
Liang Fu, Topological crystalline insulators. Physical Review Letters. ,vol. 106, pp. 106802- ,(2011) , 10.1103/PHYSREVLETT.106.106802
TC Li, Shao-Ping Lu, None, Quantum conductance of graphene nanoribbons with edge defects Physical Review B. ,vol. 77, pp. 085408- ,(2008) , 10.1103/PHYSREVB.77.085408
B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells Science. ,vol. 314, pp. 1757- 1761 ,(2006) , 10.1126/SCIENCE.1133734
Fan Zhang, C. L. Kane, E. J. Mele, Surface State Magnetization and Chiral Edge States on Topological Insulators Physical Review Letters. ,vol. 110, pp. 046404- ,(2013) , 10.1103/PHYSREVLETT.110.046404
F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, J. J. Palacios, Coherent transport in graphene nanoconstrictions Physical Review B. ,vol. 74, pp. 195417- ,(2006) , 10.1103/PHYSREVB.74.195417
Yoichi Ando, Liang Fu, Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials Annual Review of Condensed Matter Physics. ,vol. 6, pp. 361- 381 ,(2015) , 10.1146/ANNUREV-CONMATPHYS-031214-014501