Lieb-Robinson bounds and the generation of correlations and topological quantum order.

作者: S. Bravyi , M. B. Hastings , F. Verstraete

DOI: 10.1103/PHYSREVLETT.97.050401

关键词:

摘要: The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss several consequences this result context information theory. First, we show leaks out spacelike separated regions is negligible and there a finite speed at which correlations entanglement can be distributed. Second, how these ideas used prove lower bounds on time it takes convert without topological order property. Finally, rate entropy created block spins scales like boundary block.

参考文章(24)
Andrew M. Childs, Frank Verstraete, Guifré Vidal, Debbie W. Leung, Asymptotic entanglement capacity of the ising and anisotropic Heisenberg interactions Quantum Information & Computation. ,vol. 3, pp. 97- 105 ,(2003) , 10.26421/QIC3.2-1
M. B. Hastings, Solving gapped Hamiltonians locally Physical Review B. ,vol. 73, pp. 085115- ,(2006) , 10.1103/PHYSREVB.73.085115
F. Verstraete, D. Porras, J. I. Cirac, Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. Physical Review Letters. ,vol. 93, pp. 227205- ,(2004) , 10.1103/PHYSREVLETT.93.227205
M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions Physical Review B. ,vol. 69, pp. 104431- ,(2004) , 10.1103/PHYSREVB.69.104431
Bruno Nachtergaele, Robert Sims, Lieb-Robinson Bounds and the Exponential Clustering Theorem Communications in Mathematical Physics. ,vol. 265, pp. 119- 130 ,(2006) , 10.1007/S00220-006-1556-1
G. Vidal, J. I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Physical Review Letters. ,vol. 90, pp. 227902- ,(2003) , 10.1103/PHYSREVLETT.90.227902
Benjamin Schumacher, Michael D. Westmoreland, Sending classical information via noisy quantum channels Physical Review A. ,vol. 56, pp. 131- 138 ,(1997) , 10.1103/PHYSREVA.56.131
M. Fannes, A Continuity Property of the Entropy Density for Spin Lattice Systems Communications in Mathematical Physics. ,vol. 31, pp. 291- 294 ,(1973) , 10.1007/BF01646490
Elliott H. Lieb, Derek W. Robinson, The Finite Group Velocity of Quantum Spin Systems Communications in Mathematical Physics. ,vol. 28, pp. 251- 257 ,(1972) , 10.1007/BF01645779
Daniel M. Greenberger, Michael A. Horne, Abner Shimony, Anton Zeilinger, Bell’s theorem without inequalities American Journal of Physics. ,vol. 58, pp. 1131- 1143 ,(1990) , 10.1119/1.16243