On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries

作者: Jaroslav Dittrich , Pavel Exner , Christian Kühn , Konstantin Pankrashkin

DOI: 10.3233/ASY-151341

关键词:

摘要: Let $S\subset\mathbb{R}^3$ be a $C^4$-smooth relatively compact orientable surface with sufficiently regular boundary. For $\beta\in\mathbb{R}_+$, let $E_j(\beta)$ denote the $j$th negative eigenvalue of operator associated quadratic form \[ H^1(\mathbb{R}^3)\ni u\mapsto \iiint_{\mathbb{R}^3} |\nabla u|^2dx -\beta \iint_S |u|^2d\sigma, \] where $\sigma$ is two-dimensional Hausdorff measure on $S$. We show that for each fixed $j$ one has asymptotic expansion E_j(\beta)=-\dfrac{\beta^2}{4}+\mu^D_j+ o(1) \;\text{ as }\; \beta\to+\infty\,, $\mu_j^D$ $-\Delta_S+K-M^2$ $L^2(S)$, in which $K$ and $M$ are Gauss mean curvatures, respectively, $-\Delta_S$ Laplace-Beltrami Dirichlet condition at boundary If, addition, $S$ $C^2$-smooth, then remainder estimate can improved to ${\mathcal O}(\beta^{-1}\log\beta)$.

参考文章(27)
Vincent Bruneau, Gilles Carbou, Spectral asymptotic in the large coupling limit Asymptotic Analysis. ,vol. 29, pp. 91- 113 ,(2002)
Andrea Mantile, Andrea Posilicano, Mourad Sini, Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces Journal of Differential Equations. ,vol. 261, pp. 1- 55 ,(2016) , 10.1016/J.JDE.2015.11.026
Pavel Exner, Leaky Quantum Graphs: A Review arXiv: Mathematical Physics. ,(2007)
J.F. Brasche, P. Exner, Y.A. Kuperin, P. Seba, Schrödinger-Operators with Singular Interactions Journal of Mathematical Analysis and Applications. ,vol. 184, pp. 112- 139 ,(1994) , 10.1006/JMAA.1994.1188
P. Duclos, P. Exner, D. Krejčiřík, Bound States in Curved Quantum Layers Communications in Mathematical Physics. ,vol. 223, pp. 13- 28 ,(2001) , 10.1007/PL00005582
Peter Kuchment, Quantum graphs: I. Some basic structures Waves in Random Media. ,vol. 14, ,(2004) , 10.1088/0959-7174/14/1/014
Joachim Weidmann, Continuity of the eigenvalues of self-adjoint operators with respect to the strong operator topology Integral Equations and Operator Theory. ,vol. 3, pp. 138- 142 ,(1980) , 10.1007/BF01682875