Android Malware Characterization using Metadata and Machine Learning Techniques

作者: Alfonso Muñoz , Ignacio Martín , José Alberto Hernández , Antonio Guzmán

DOI:

关键词:

摘要: Android Malware has emerged as a consequence of the increasing popularity smartphones and tablets. While most previous work focuses on inherent characteristics apps to detect malware, this study analyses indirect features meta-data identify patterns in malware applications. Our experiments show that: (1) permissions used by an application offer only moderate performance results; (2) other publicly available at Markets are more relevant detecting such developer certificate issuer, (3) compact efficient classifiers can be constructed for early detection applications prior code inspection or sandboxing.

参考文章(21)
Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas, Gonzalo Álvarez, PUMA: Permission Usage to Detect Malware in Android CISIS/ICEUTE/SOCO Special Sessions. pp. 289- 298 ,(2013) , 10.1007/978-3-642-33018-6_30
Heqing Huang, Yeonjoon Lee, Kai Chen, Peng Liu, Peng Wang, Nan Zhang, Wei Zou, XiaoFeng Wang, Finding unknown malice in 10 seconds: mass vetting for new threats at the Google-play scale usenix security symposium. pp. 659- 674 ,(2015)
Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, Yael Weiss, Andromaly: a behavioral malware detection framework for android devices intelligent information systems. ,vol. 38, pp. 161- 190 ,(2012) , 10.1007/S10844-010-0148-X
Ryan Johnson, Zhaohui Wang, Corey Gagnon, Angelos Stavrou, Analysis of Android Applications' Permissions 2012 IEEE Sixth International Conference on Software Security and Reliability Companion. pp. 45- 46 ,(2012) , 10.1109/SERE-C.2012.44
A. M. Aswini, P. Vinod, Droid permission miner: Mining prominent permissions for Android malware analysis international conference on applications of digital information and web technologies. pp. 81- 86 ,(2014) , 10.1109/ICADIWT.2014.6814679
David Barrera, H. G üne ş Kayacik, Paul C. van Oorschot, Anil Somayaji, A methodology for empirical analysis of permission-based security models and its application to android Proceedings of the 17th ACM conference on Computer and communications security - CCS '10. pp. 73- 84 ,(2010) , 10.1145/1866307.1866317
Suleiman Y. Yerima, Igor Muttik, Sakir Sezer, High Accuracy Android Malware Detection Using Ensemble Learning Iet Information Security. ,vol. 9, pp. 313- 320 ,(2015) , 10.1049/IET-IFS.2014.0099
Naser Peiravian, Xingquan Zhu, Machine Learning for Android Malware Detection Using Permission and API Calls international conference on tools with artificial intelligence. pp. 300- 305 ,(2013) , 10.1109/ICTAI.2013.53
Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, Xuxian Jiang, RiskRanker Proceedings of the 10th international conference on Mobile systems, applications, and services - MobiSys '12. pp. 281- 294 ,(2012) , 10.1145/2307636.2307663
Saman Zonouz, Amir Houmansadr, Robin Berthier, Nikita Borisov, William Sanders, Secloud: A cloud-based comprehensive and lightweight security solution for smartphones Computers & Security. ,vol. 37, pp. 215- 227 ,(2013) , 10.1016/J.COSE.2013.02.002