Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach

作者: Yacine Ait-Sahalia

DOI: 10.1111/1468-0262.00274

关键词:

摘要: When a continuous-time diffusion is observed only at discrete dates, in most cases the transition distribution and hence likelihood function of observations not explicitly computable. Using Hermite polynomials, I construct an explicit sequence closed-form functions show that it converges to true (but unknown) function. document approximation very accurate prove maximizing results estimator maximum shares its asymptotic properties. Monte Carlo evidence reveals this method outperforms other schemes situations relevant for financial models.

参考文章(34)
John C. Cox, The Constant Elasticity of Variance Option Pricing Model The Journal of Portfolio Management. ,vol. 23, pp. 15- 17 ,(1996) , 10.3905/JPM.1996.015
Angelo Melino, Estimation of continuous-time models in finance Cambridge University Press. pp. 313- 352 ,(1994) , 10.1017/CCOL0521444608.008
Danielle Florens, Estimation of the Diffusion Coefficient from Crossings Statistical Inference for Stochastic Processes. ,vol. 1, pp. 175- 195 ,(1998) , 10.1023/A:1009927813898
Iosif Il’ich Gihman, Anatolii Vladimirovich Skorohod, Stochastic Differential Equations ,(1972)
Steven E. Shreve, Ioannis Karatzas, Brownian Motion and Stochastic Calculus ,(1987)
Samuel Karlin, Howard E Taylor, A second course in stochastic processes ,(1981)
Mathieu Kessler, Michael Sørensen, Michael Sorensen, Estimating equations based on eigenfunctions for a discretely observed diffusion process Bernoulli. ,vol. 5, pp. 299- 314 ,(1999) , 10.2307/3318437
L. C. G. Rogers, Smooth Transition Densities for One-Dimensional Diffusions Bulletin of the London Mathematical Society. ,vol. 17, pp. 157- 161 ,(1985) , 10.1112/BLMS/17.2.157
Halbert White, Maximum likelihood estimation of misspecified models Econometrica. ,vol. 50, pp. 1- 25 ,(1982) , 10.2307/1912004
Henry P. McKean, Elementary solutions for certain parabolic partial differential equations Transactions of the American Mathematical Society. ,vol. 82, pp. 519- 548 ,(1956) , 10.1090/S0002-9947-1956-0087012-3