The Hall algebra of a curve

作者: Mikhail Kapranov , Olivier Schiffmann , Eric Vasserot

DOI: 10.1007/S00029-016-0239-9

关键词:

摘要: Let X be a smooth projective curve over finite field. We describe H, the full Hall algebra of vector bundles on X, as Feigin–Odesskii shuffle algebra. This corresponds to scheme S all cusp eigenforms and rational function two variables coming from Rankin–Selberg L-functions. means that zeroes these L-functions control relations in H. The is disjoint union countably many \({\mathbb G}_m\)-orbits. In case when has theta-characteristic defined base field, we embed H into space regular functions symmetric powers S.

参考文章(31)
J. L. Waldspurger, C. Moeglin, Spectral Decomposition and Eisenstein Series ,(1995)
P. Deligne, Les Constantes des Equations Fonctionnelles des Fonctions L Lecture Notes in Mathematics. ,vol. 349, pp. 501- 597 ,(1973) , 10.1007/978-3-540-37855-6_7
David Mumford, G. M. Bergman, Lectures on curves on an algebraic surface ,(1966)
Alexandre Grothendieck, Jean Alexandre Dieudonné, Étude globale élémentaire de quelques classes de morphismes Institut des hautes études scientifiques. ,(1961)
Vyjayanthi Chari, A guide to quantum groups ,(1994)
Olivier Shiffmann, LECTURES ON HALL ALGEBRAS arXiv: Representation Theory. pp. 130- ,(2008)
A. Braverman, D. Kazhdan, On the Schwartz space of the basic affine space Selecta Mathematica-new Series. ,vol. 5, pp. 1- 28 ,(1999) , 10.1007/S000290050041