Hamilton-Jacobi formulation of systems within Caputo's fractional derivative

作者: Eqab M Rabei , Ibtesam Almayteh , Sami I Muslih , Dumitru Baleanu

DOI: 10.1088/0031-8949/77/01/015101

关键词:

摘要: A new fractional Hamilton–Jacobi formulation for discrete systems in terms of Caputo derivatives was developed. The action function is obtained and the solutions equations motion are recovered. Two examples studied detail.

参考文章(66)
Richard L. Magin, Fractional Calculus in Bioengineering ,(2006)
Oleg Igorevich Marichev, Stefan G Samko, Anatoly A Kilbas, Fractional Integrals and Derivatives: Theory and Applications ,(1993)
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)
Małgorzata Klimek, Fractional sequential mechanics — models with symmetric fractional derivative Czechoslovak Journal of Physics. ,vol. 51, pp. 1348- 1354 ,(2001) , 10.1023/A:1013378221617
Małgorzata Klimek, Lagrangean and Hamiltonian fractional sequential mechanics Czechoslovak Journal of Physics. ,vol. 52, pp. 1247- 1253 ,(2002) , 10.1023/A:1021389004982
Laurent Amour, Matania Ben-Artzi, Global existence and decay for viscous Hamilton-Jacobi equations Nonlinear Analysis-theory Methods & Applications. ,vol. 31, pp. 621- 628 ,(1998) , 10.1016/S0362-546X(97)00427-6
Ali Tofighi, The intrinsic damping of the fractional oscillator Physica A-statistical Mechanics and Its Applications. ,vol. 329, pp. 29- 34 ,(2003) , 10.1016/S0378-4371(03)00598-3
Eqab M. Rabei, Khaled I. Nawafleh, Raed S. Hijjawi, Sami I. Muslih, Dumitru Baleanu, The Hamilton formalism with fractional derivatives Journal of Mathematical Analysis and Applications. ,vol. 327, pp. 891- 897 ,(2007) , 10.1016/J.JMAA.2006.04.076