Guided Rule Discovery in XCS for High-Dimensional Classification Problems

作者: Mani Abedini , Michael Kirley

DOI: 10.1007/978-3-642-25832-9_1

关键词:

摘要: XCS is a learning classifier system that combines reinforcement scheme with evolutionary algorithms to evolve population of classifiers in the form condition-action rules. In this paper, we investigate effectiveness high-dimensional classification problems where number features greatly exceeds data instances --- common characteristics microarray gene expression tasks. We introduce new guided rule discovery mechanisms for XCS, inspired by feature selection techniques commonly used machine learning. The extracted quality information bias operators. performance proposed model compared standard and well-known using benchmark binary tasks sets. Experimental results suggests mechanism computationally efficient, promotes evolution more accurate solutions. performs significantly better than comparative when tackling problems.

参考文章(29)
M. V. Butz, S. W. Wilson, An algorithmic description of XCS soft computing. ,vol. 6, pp. 144- 153 ,(2002) , 10.1007/S005000100111
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, A. J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 6745- 6750 ,(1999) , 10.1073/PNAS.96.12.6745
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
Albert Orriols-Puig, Jorge Casillas, Ester Bernadó-Mansilla, Genetic-based machine learning systems are competitive for pattern recognition Evolutionary Intelligence. ,vol. 1, pp. 209- 232 ,(2008) , 10.1007/S12065-008-0013-9
Sergio Morales-Ortigosa, Albert Orriols-Puig, Ester Bernadó-Mansilla, New Crossover Operator for Evolutionary Rule Discovery in XCS international conference hybrid intelligent systems. pp. 867- 872 ,(2008) , 10.1109/HIS.2008.26
Alberto Fernandez, Salvador Garcia, Julián Luengo, Ester Bernado-Mansilla, Francisco Herrera, Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study IEEE Transactions on Evolutionary Computation. ,vol. 14, pp. 913- 941 ,(2010) , 10.1109/TEVC.2009.2039140
Fang-Xiang Wu, W. J. Zhang, Anthony J. Kusalik, On Determination of Minimum Sample Size for Discovery of Temporal Gene Expression Patterns international multi symposiums on computer and computational sciences. ,vol. 1, pp. 96- 103 ,(2006) , 10.1109/IMSCCS.2006.95
Jaume Bacardit, Natalio Krasnogor, Smart crossover operator with multiple parents for a Pittsburgh learning classifier system Proceedings of the 8th annual conference on Genetic and evolutionary computation - GECCO '06. pp. 1441- 1448 ,(2006) , 10.1145/1143997.1144235
Martin V. Butz, Martin Pelikan, Xavier Llorà, David E. Goldberg, Automated global structure extraction for effective local building block processing in XCS Evolutionary Computation. ,vol. 14, pp. 345- 380 ,(2006) , 10.1162/EVCO.2006.14.3.345
Martin V. Butz, Stewart W. Wilson, An Algorithmic Description of ACS2 IWLCS '00 Revised Papers from the Third International Workshop on Advances in Learning Classifier Systems. pp. 211- 230 ,(2000) , 10.1007/3-540-44640-0_15