Analysis of a Modified Parareal Algorithm for Second-Order Ordinary Differential Equations

作者: M. Gander , M. Petcu , Theodore E. Simos , George Psihoyios , Ch. Tsitouras

DOI: 10.1063/1.2790116

关键词:

摘要: The parareal algorithm is a numerical method to integrate evolution problems on parallel computers. While this effective for diffusive problems, its convergence properties are much less favorable hyperbolic problems. We analyze in paper recently proposed variant of the case systems second order ordinary differential equations.

参考文章(6)
Martin J. Gander, Ernst Hairer, Nonlinear Convergence Analysis for the Parareal Algorithm Lecture Notes in Computational Science and Engineering. pp. 45- 56 ,(2008) , 10.1007/978-3-540-75199-1_4
Charbel Farhat, Marion Chandesris, Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications International Journal for Numerical Methods in Engineering. ,vol. 58, pp. 1397- 1434 ,(2003) , 10.1002/NME.860
Jacques-Louis Lions, Yvon Maday, Gabriel Turinici, Résolution d'EDP par un schéma en temps «pararéel » Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. ,vol. 332, pp. 661- 668 ,(2001) , 10.1016/S0764-4442(00)01793-6
Charbel Farhat, Julien Cortial, Climène Dastillung, Henri Bavestrello, Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses International Journal for Numerical Methods in Engineering. ,vol. 67, pp. 697- 724 ,(2006) , 10.1002/NME.1653
Martin J. Gander, Stefan Vandewalle, Analysis of the Parareal Time-Parallel Time-Integration Method SIAM Journal on Scientific Computing. ,vol. 29, pp. 556- 578 ,(2007) , 10.1137/05064607X