Digital Seed Train Twins and Statistical Methods.

作者: Tanja Hernández Rodríguez , Björn Frahm

DOI: 10.1007/10_2020_137

关键词:

摘要: Model-based concepts and simulation techniques in combination with digital tools emerge as a key to explore the full potential of biopharmaceutical production processes, which contain several challenging development process steps. One these steps is time- cost-intensive cell proliferation (also called seed train) increase number from thawing up scale. Challenges like complex metabolism, batch-to-batch variation, variabilities behavior, influences changes cultivation conditions necessitate adequate solutions provide information about current near future state derive correct decisions.For this purpose train twins have proved be efficient, digitally display time-dependent behavior important variables based on mathematical models, strategies, adaption procedures.This chapter will outline needs for digitalization trains, construction twin, role parameter estimation, different statistical methods within context, are applicable problems field bioprocessing. The results case study presented illustrate Bayesian approach estimation prediction an industrial culture digitalization. This outlines processes (seed trains), twin well seed, example It has been shown way prior knowledge input uncertainty can considered propagated predictive uncertainty.

参考文章(49)
Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola, Global Sensitivity Analysis: The Primer ,(2008)
Rüdiger Heidemann, Mokhtar Mered, D. Q. Wang, Bruce Gardner, Chun Zhang, James Michaels, Hans-Jürgen Henzler, Nada Abbas, Konstantin Konstantinov, A new seed-train expansion method for recombinant mammalian cell lines Cytotechnology. ,vol. 38, pp. 99- 108 ,(2002) , 10.1023/A:1021114300958
Bradley P. Carlin, Thomas A. Louis, Bayesian Methods for Data Analysis ,(2008)
Christoph Herwig, Oscar F. Garcia-Aponte, Aydin Golabgir, Anurag S. Rathore, Knowledge management in the QbD paradigm: manufacturing of biotech therapeutics. Trends in Biotechnology. ,vol. 33, pp. 381- 387 ,(2015) , 10.1016/J.TIBTECH.2015.04.004
Jarka Glassey, Krist V. Gernaey, Christoph Clemens, Torsten W. Schulz, Rui Oliveira, Gerald Striedner, Carl-Fredrik Mandenius, Process analytical technology (PAT) for biopharmaceuticals Biotechnology Journal. ,vol. 6, pp. 369- 377 ,(2011) , 10.1002/BIOT.201000356
Manuel J. T. Carrondo, Paula M. Alves, Nuno Carinhas, Jarka Glassey, Friedemann Hesse, Otto-Wilhelm Merten, Martina Micheletti, Thomas Noll, Rui Oliveira, Udo Reichl, Arne Staby, Ana P. Teixeira, Henry Weichert, Carl-Fredrik Mandenius, How can measurement, monitoring, modeling and control advance cell culture in industrial biotechnology? Biotechnology Journal. ,vol. 7, pp. 1522- 1529 ,(2012) , 10.1002/BIOT.201200226
Rafael Ramos de Andrade, Elmer Ccopa Rivera, Daniel I. P. Atala, Rubens Maciel Filho, Francisco Maugeri Filho, Aline C. Costa, Study of kinetic parameters in a mechanistic model for bioethanol production through a screening technique and optimization. Bioprocess and Biosystems Engineering. ,vol. 32, pp. 673- 680 ,(2009) , 10.1007/S00449-008-0291-8
J. Jewaratnam, J. Zhang, A. Hussain, J. Morris, Batch-to-Batch Iterative Learning Control Using Updated Models Based on a Moving Window of Historical Data Procedia Engineering. ,vol. 42, pp. 206- 213 ,(2012) , 10.1016/J.PROENG.2012.07.411