Hierarchy of random chaotic maps with an invariant measure

作者: M. A. Jafarizadeh , S. Behnia

DOI: 10.1063/1.1610240

关键词:

摘要: Hierarchy of one and many-parameter families random chaotic maps one-parameter elliptic cn type with an invariant measure have been introduced. Using the (Sinai–Ruelle–Bowen measure), Kolmogorov–Sinai entropy calculated analytically, where numerical simulations support results.

参考文章(18)
G. Gy�rgyi, P. Sz�pfalusy, Fully developed chaotic 1-d maps European Physical Journal B. ,vol. 55, pp. 179- 186 ,(1984) , 10.1007/BF01420570
Yves Pomeau, Paul Manneville, Intermittent transition to turbulence in dissipative dynamical systems Communications in Mathematical Physics. ,vol. 74, pp. 189- 197 ,(1980) , 10.1007/BF01197757
Lei Yu, Edward Ott, Qi Chen, Transition to chaos for random dynamical systems Physical Review Letters. ,vol. 65, pp. 2935- 2938 ,(1990) , 10.1103/PHYSREVLETT.65.2935
M.A. Jafarizadeh, S. Behnia, HIERARCHY OF ONE- AND MANY-PARAMETER FAMILIES OF ELLIPTIC CHAOTIC MAPS OF CN AND SN TYPES Physics Letters A. ,vol. 310, pp. 168- 176 ,(2003) , 10.1016/S0375-9601(03)00343-8
Vittorio Loreto, Giovanni Paladin, Angelo Vulpiani, Concept of complexity in random dynamical systems Physical Review E. ,vol. 53, pp. 2087- 2098 ,(1996) , 10.1103/PHYSREVE.53.2087
R. Klages, J. R. Dorfman, Simple maps with fractal diffusion coefficients. Physical Review Letters. ,vol. 74, pp. 387- 390 ,(1995) , 10.1103/PHYSREVLETT.74.387
Ken Umeno, METHOD OF CONSTRUCTING EXACTLY SOLVABLE CHAOS Physical Review E. ,vol. 55, pp. 5280- 5284 ,(1997) , 10.1103/PHYSREVE.55.5280
Shigetoshi Katsura, Wataru Fukuda, Exactly solvable models showing chaotic behavior II Physica A-statistical Mechanics and Its Applications. ,vol. 136, pp. 588- 599 ,(1985) , 10.1016/0378-4371(85)90048-2
B. Derrida, H. Flyvbjerg, The random map model: a disordered model with deterministic dynamics Journal de Physique. ,vol. 48, pp. 971- 978 ,(1987) , 10.1051/JPHYS:01987004806097100