The Role of Nitric Oxide in Apoptosis and Autophagy: Biochemical and Computational Studies

作者: PA Loughran , EZ Bagci , R Zamora , Y Vodovotz , TR Billiar

DOI: 10.1016/B978-0-12-373866-0.00015-0

关键词:

摘要: Publisher Summary This chapter focuses on the regulation and function of nitric oxide (NO)/inducible NOS (iNOS) in liver settings acute inflammation. It also helps understanding factors that govern consequence sustained NO production tissues investigates mechanisms cytotoxicity, such as necrosis autophagy. In liver, iNOS limits cell death endotoxemia, regeneration, exposure to ligands, while conversely creating hepatic damage under ischemia/reperfusion hemorrhagic shock. Organ physiology pathophysiological response (NO) vary across a range inflammatory stresses trauma, hemorrhage, injury, sepsis, part reflected by amount, duration, type, source NO. The is primary site stress, which generated inducible synthase may impact cell/tissue/organ either positively or negatively. These divergent outcomes appear depend context milieu produced, including levels antioxidants generation reactive oxygen species, trigger protection death. Specifically, fate hepatocyte, controlled downstream activation soluble guanylate cyclase cyclic guanosine monophosphate, S-nitrosative inhibition active cysteine within enzymes architect apoptosis, caspases. can modulate complex variety processes signaling, modification proteins, gene expression affect apoptosis related process autophagy cell-specific manner. switch between positive negative cells, tissues, organs will be discussed with special attention use experimental data mathematical models identify likely actions future therapeutic directions.

参考文章(172)
Joy L. Collins, Yoram Vodovotz, Timothy R. Billiar, 68 – Biology of Nitric Oxide: Measurement, Modulation, and Models Surgical Research. pp. 949- 969 ,(2001) , 10.1016/B978-012655330-7/50070-8
T R Billiar, B S Taylor, L H Alarcon, Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry. ,vol. 63, pp. 766- 781 ,(1998)
Udo K MESSMER, Bernhard BRÜNE, Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochemical Journal. ,vol. 319, pp. 299- 305 ,(1996) , 10.1042/BJ3190299
David A. Wink, Martin Feelisch, Yoram Vodovotz, Jon Fukuto, Matthew B. Grisham, The Chemical Biology of Nitric Oxide Nitric Oxide#R##N#Biology and Pathobiology. pp. 245- 291 ,(2002) , 10.1007/0-306-46806-9_10
Young-Myeong Kim, Hector A. Bergonia, Claudia Müller, Bruce R. Pitt, W. David Watkins, Jack R. Lancaster, Nitric oxide and intracellular heme. Advances in pharmacology (San Diego). ,vol. 34, pp. 277- 291 ,(1995) , 10.1016/S1054-3589(08)61092-3
C. Balagué, E. M. Targarona, M. Pujol, X. Filella, J. J. Espert, M. Trias, Peritoneal response to a septic challenge. Comparison between open laparotomy, pneumoperitoneum laparoscopy, and wall lift laparoscopy. Surgical Endoscopy and Other Interventional Techniques. ,vol. 13, pp. 792- 796 ,(1999) , 10.1007/S004649901101
Ruben Zamora, Yoram Vodovotz, Timothy R. Billiar, Inducible nitric oxide synthase and inflammatory diseases. Molecular Medicine. ,vol. 6, pp. 347- 373 ,(2000) , 10.1007/BF03401781
Bevra H. Hahn, Ram Pyare Singh, Antonio La Cava, Fanny M. Ebling, Tolerogenic Treatment of Lupus Mice with Consensus Peptide Induces Foxp3-Expressing, Apoptosis-Resistant, TGFβ-Secreting CD8+ T Cell Suppressors Journal of Immunology. ,vol. 175, pp. 7728- 7737 ,(2005) , 10.4049/JIMMUNOL.175.11.7728
Jon O. Lundberg, Eddie Weitzberg, Mark T. Gladwin, The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics Nature Reviews Drug Discovery. ,vol. 7, pp. 156- 167 ,(2008) , 10.1038/NRD2466