Physically based modeling and characterization of hot deformation behavior of twinning-induced plasticity steels bearing vanadium and niobium

作者: Atef Hamada , Ali Khosravifard , David Porter , L. Pentti Karjalainen

DOI: 10.1016/J.MSEA.2017.07.038

关键词:

摘要: Abstract In the present work, hot deformation behavior of four TWIP steels is studied by conducting compression tests at strain rates in range 0.01–5/s and temperatures 950–1100 °C using a Gleeble thermomechanical simulator. The differed with respect to their chemical compositions. They were non-microalloyed, Nb-microalloyed, V-microalloyed high-Al V-microalloyed. microstructural evolutions are scanning electron microscope (SEM) equipped backscattered diffraction (EBSD) detector. Also, modeled dislocation density based Bergstrom diffusional transformation Kolmogorov-Johnson-Mehl-Avrami models. peak stresses variant occurred higher strains than variant. microstructure Nb-microalloyed showed that dynamic recovery was more active recrystallization (DRX) when steel deformed lower temperatures, i.e. 1000 °C. modeling as Zener–Hollomon parameter (Z) increases, hardening for increases clearly rate others. Finally, it seen increased leads decreased Avrami exponents (nA) variants suggesting occurrence nucleation on grain twin boundaries.

参考文章(38)
Dejun Li, Yaorong Feng, Shengyin Song, Qiang Liu, Qiang Bai, Gang Wu, Neng Lv, Fengzhang Ren, Influences of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel Materials & Design. ,vol. 84, pp. 238- 244 ,(2015) , 10.1016/J.MATDES.2015.06.092
I. Mejía, F. Reyes-Calderón, J.M. Cabrera, Modeling the hot flow behavior of a Fe–22Mn–0.41C–1.6Al–1.4Si TWIP steel microalloyed with Ti, V and Nb Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 644, pp. 374- 385 ,(2015) , 10.1016/J.MSEA.2015.07.078
H.J McQueen, N.D Ryan, Constitutive analysis in hot working Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 322, pp. 43- 63 ,(2002) , 10.1016/S0921-5093(01)01117-0
G.W. Yuan, M.X. Huang, Supper strong nanostructured TWIP steels for automotive applications Progress in Natural Science: Materials International. ,vol. 24, pp. 50- 55 ,(2014) , 10.1016/J.PNSC.2014.01.004
Michael Schinhammer, Christina M. Pecnik, Felix Rechberger, Anja C. Hänzi, Jörg F. Löffler, Peter J. Uggowitzer, Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C(–Pd) TWIP alloys Acta Materialia. ,vol. 60, pp. 2746- 2756 ,(2012) , 10.1016/J.ACTAMAT.2012.01.041
F. Reyes-Calderón, I. Mejía, A. Boulaajaj, J.M. Cabrera, Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high-Mn austenitic twinning induced plasticity (TWIP) steel Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 560, pp. 552- 560 ,(2013) , 10.1016/J.MSEA.2012.09.101
S.V. Mehtonen, L.P. Karjalainen, D.A. Porter, Modeling of the high temperature flow behavior of stabilized 12–27 wt% Cr ferritic stainless steels Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 607, pp. 44- 52 ,(2014) , 10.1016/J.MSEA.2014.03.124
A.S. Hamada, L.P. Karjalainen, M.C. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 467, pp. 114- 124 ,(2007) , 10.1016/J.MSEA.2007.02.074
A. Khosravifard, A.S. Hamada, M.M. Moshksar, R. Ebrahimi, D.A. Porter, L.P. Karjalainen, High temperature deformation behavior of two as-cast high-manganese TWIP steels Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 582, pp. 15- 21 ,(2013) , 10.1016/J.MSEA.2013.06.014