Fast and automatic heart isolation in 3D CT volumes: optimal shape initialization

作者: Yefeng Zheng , Fernando Vega-Higuera , Shaohua Kevin Zhou , Dorin Comaniciu

DOI: 10.1007/978-3-642-15948-0_11

关键词:

摘要: Heart isolation (separating the heart from proximity tissues, e.g., lung, liver, and rib cage) is a prerequisite to clearly visualize coronary arteries in 3D. Such 3D visualization provides an intuitive view physicians diagnose suspicious segments. also necessary radiotherapy planning mask out for treatment of lung or liver tumors. In this paper, we propose efficient robust method computed tomography (CT) volumes. Marginal space learning (MSL) used efficiently estimate position, orientation, scale heart. An optimal mean shape (which optimally represents whole population) then aligned with detected pose, followed by boundary refinement using learning-based detector. Post-processing further exploited exclude cage mask. A large-scale experiment on 589 volumes (including both contrasted non-contrasted scans) 288 patients demonstrates robustness approach. It achieves point-to-mesh error 1.91 mm. Running at speed 1.5 s/volume, it least 10 times faster than previous methods.

参考文章(10)
T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models—their training and application Computer Vision and Image Understanding. ,vol. 61, pp. 38- 59 ,(1995) , 10.1006/CVIU.1995.1004
A. Moreno, C.M. Takemura, O. Colliot, O. Camara, I. Bloch, Using anatomical knowledge expressed as fuzzy constraints to segment the heart in CT images Pattern Recognition. ,vol. 41, pp. 2525- 2540 ,(2008) , 10.1016/J.PATCOG.2008.01.020
Yefeng Zheng, Adrian Barbu, Bogdan Georgescu, Michael Scheuering, Dorin Comaniciu, Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features IEEE Transactions on Medical Imaging. ,vol. 27, pp. 1668- 1681 ,(2008) , 10.1109/TMI.2008.2004421
B.P.F. Lelieveldt, R.J. van der Geest, M. Ramze Rezaee, J.G. Bosch, J.H.C. Reiber, Anatomical model matching with fuzzy implicit surfaces for segmentation of thoracic volume scans IEEE Transactions on Medical Imaging. ,vol. 18, pp. 218- 230 ,(1999) , 10.1109/42.764893
Gregson, Automatic segmentation of the heart in 3D MR images canadian conference on electrical and computer engineering. pp. 584- 587 ,(1994) , 10.1109/CCECE.1994.405819
Gareth Funka-Lea, Yuri Boykov, Charles Florin, M-P Jolly, Romain Moreau-Gobard, Rana Ramaraj, Daniel Rinck, None, Automatic heart isolation for CT coronary visualization using graph-cuts international symposium on biomedical imaging. pp. 614- 617 ,(2006) , 10.1109/ISBI.2006.1624991
Zhuowen Tu, Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering international conference on computer vision. ,vol. 2, pp. 1589- 1596 ,(2005) , 10.1109/ICCV.2005.194
A. Srivastava, S.H. Joshi, W. Mio, Xiuwen Liu, Statistical shape analysis: clustering, learning, and testing IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 27, pp. 590- 602 ,(2005) , 10.1109/TPAMI.2005.86
Eva M. van Rikxoort, Ivana Isgum, Marius Staring, Stefan Klein, Bram van Ginneken, Adaptive local multi-atlas segmentation: application to heart segmentation in chest CT scans Proceedings of SPIE, the International Society for Optical Engineering. ,vol. 6914, pp. 691407- ,(2008) , 10.1117/12.772301
Dana Harry Ballard, Christopher M Brown, None, Computer vision ,(1982)