Monte Carlo Markov chain techniques for unsupervised MRF-based image denoising

作者: A. Tonazzini , L. Bedini

DOI: 10.1016/S0167-8655(02)00188-5

关键词:

摘要: This paper deals with discontinuity-adaptive smoothing for recovering degraded images, when Markov random field models explicit lines are used, but no a priori information about the free parameters of related Gibbs distributions is available. The adopted approach based on maximization posterior distribution respect to line and parameters, while intensity assumed be clamped maximizer itself, conditioned parameters. enables application mixed-annealing algorithm maximum posteriori (MAP) estimation image field, chain Monte Carlo techniques, over binary variables only, simultaneous likelihood A practical procedure then derived which nearly as fast MAP reconstruction by known We derive method general case linear degradation process plus superposition additive noise, experimentally validate it sub-case denoising.

参考文章(16)
Charles J. Geyer, Elizabeth A. Thompson, Constrained Monte Carlo Maximum Likelihood for Dependent Data Journal of the royal statistical society series b-methodological. ,vol. 54, pp. 657- 683 ,(1992) , 10.1111/J.2517-6161.1992.TB01443.X
L. Bedini, I. Gerace, E. Salerno, A. Tonazzini, Models and Algorithms for Edge-Preserving Image Reconstruction Advances in Imaging and Electron Physics. ,vol. 97, pp. 85- 189 ,(1996) , 10.1016/S1076-5670(08)70094-6
Julian Besag, On the statistical analysis of dirty pictures Journal of the royal statistical society series b-methodological. ,vol. 48, pp. 259- 279 ,(1986) , 10.1111/J.2517-6161.1986.TB01412.X
Xavier Descombes, Robin Morris, Josiane Zerubia, Marc Berthod, Maximum likelihood estimation of Markov Random Field parameters using Markov Chain Monte Carlo algorithms Lecture Notes in Computer Science. pp. 133- 148 ,(1997) , 10.1007/3-540-62909-2_77
J. Marroquin, S. Mitter, T. Poggio, Probabilistic Solution of Ill-Posed Problems in Computational Vision Journal of the American Statistical Association. ,vol. 82, pp. 76- 89 ,(1987) , 10.1080/01621459.1987.10478393
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596
Luigi Bedini, Anna Tonazzini, Image restoration preserving discontinuities: the Bayesian approach and neural networks Image and Vision Computing. ,vol. 10, pp. 108- 118 ,(1992) , 10.1016/0262-8856(92)90005-N
S. Lakshmanan, H. Derin, Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 11, pp. 799- 813 ,(1989) , 10.1109/34.31443