Cyclic complexes, Hall polynomials and simple Lie algebras

作者: Qinghua Chen , Bangming Deng

DOI: 10.1016/J.JALGEBRA.2015.04.043

关键词:

摘要: Abstract In this paper we study the category C m ( P ) of -cyclic complexes over , where is projective modules a finite dimensional hereditary algebra A and describe almost split sequences in . This applied to prove existence Hall polynomials when representation ≠ 1 We further introduce its localization sense Bridgeland. case finite, use define generic Bridgeland–Hall show that it contains subalgebra isomorphic integral form corresponding quantum enveloping algebra. provides construction simple Lie associated with

参考文章(37)
Claus Michael Ringel, Hall algebras revisited ,(1992)
Claus Michael Ringel, The Hall Algebra Approach to Quantum Groups ,(2005)
Peter Gabriel, Andrei V. Roiter, Representations of Finite-Dimensional Algebras ,(1992)
Andrew Hubery, From triangulated categories to Lie algebras: A theorem of Peng and Xiao arXiv: Representation Theory. ,(2005)
George Lusztig, Introduction to Quantum Groups ,(1993)
Claus Michael Ringel, Pu Zhang, Representations of quivers over the algebra of dual numbers Journal of Algebra. ,vol. 475, pp. 327- 360 ,(2017) , 10.1016/J.JALGEBRA.2016.12.001
Jens Carsten Jantzen, Lectures on quantum groups ,(1995)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234