A quantitative quality control method of big data in cancer patients using artificial neural network

作者: Hong Shen , Jinglei Meng , Licheng Yu , Xuefeng Fang , Tianzhou Chen

DOI: 10.1109/CCIS.2014.7175787

关键词:

摘要: Nonstandard treatments for cancer patients are commonly seen in hospitals of developing countries like China. So it is crucial to standardize the with technological means order supervise process treatments. Widespread electronic health records (EHRs) has generated massive data sets which far beyond capability traditional computing model. Although there and measures about quality control, but automatic computerized Quantitative Control (QC) quantization methods still lack. In this paper, we propose a quantitative control method radiotherapy chemotherapy based on artificial neural network automatically analysis rate compliance standard treatment process. The QC items established constructed accordingly. Then selected cases evaluated by experts corresponding grades train network. After that, trained can be used grade new their score. To meet high requirement computation accommodate sets, adopt our proposal cloud. With distributed nodes cloud, dynamically allocated homogenization ANN computing, each node work both medical according system load balance resulting perform parallelism.

参考文章(17)
Michele R. Forman, Sarah M. Greene, Nancy E. Avis, Stephen H. Taplin, Paul Courtney, Peter A. Schad, Bradford W. Hesse, Deborah M. Winn, Bioinformatics: Tools to Accelerate Population Science and Disease Control Research American Journal of Preventive Medicine. ,vol. 38, pp. 646- 651 ,(2010) , 10.1016/J.AMEPRE.2010.03.002
Antarip Biswas, Saurav Nag, Naveen Ashish, Rajiv Pratap, Sumit Das, The Abzooba Smart Health Informatics Platform (SHIP) TM - From Patient Experiences to Big Data to Insights arXiv: Information Retrieval. ,(2012)
H. Min, R. Ohira, M. A. Collins, J. Bondy, N. E. Avis, O. Tchuvatkina, P. K. Courtney, R. P. Moser, A. R. Shaikh, B. W. Hesse, M. Cooper, D. Reeves, B. Lanese, C. Helba, S. M. Miller, E. A. Ross, Sharing behavioral data through a grid infrastructure using data standards Journal of the American Medical Informatics Association. ,vol. 21, pp. 642- 649 ,(2014) , 10.1136/AMIAJNL-2013-001763
Tillmann Loch, Ivo Leuschner, Carl Genberg, Klaus Weichert-Jacobsen, Frank K�ppers, Evangelos Yfantis, Michael Evans, Valeri Tsarev, Michael St�ckle, Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound. The Prostate. ,vol. 39, pp. 198- 204 ,(1999) , 10.1002/(SICI)1097-0045(19990515)39:3<198::AID-PROS8>3.0.CO;2-X
Christian Seebode, Matthias Ort, Christian Regenbrecht, Martin Peuker, BIG DATA infrastructures for pharmaceutical research international conference on big data. pp. 59- 63 ,(2013) , 10.1109/BIGDATA.2013.6691759
Jiang Gu, Clive R. Taylor, Practicing Pathology in the Era of Big Data and Personalized Medicine Applied Immunohistochemistry & Molecular Morphology. ,vol. 22, pp. 1- 9 ,(2014) , 10.1097/PAI.0000000000000022
Roberta De Angelis, Silvia Francisci, Paolo Baili, Francesca Marchesi, Paolo Roazzi, Aurélien Belot, Emanuele Crocetti, Pierre Pury, Arnold Knijn, Michel Coleman, Riccardo Capocaccia, EUROCARE Working Group, The EUROCARE-4 database on cancer survival in Europe: Data standardisation, quality control and methods of statistical analysis European Journal of Cancer. ,vol. 45, pp. 909- 930 ,(2009) , 10.1016/J.EJCA.2008.11.003
K. Schierholt, C.H. Dagli, Stock market prediction using different neural network classification architectures IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr). pp. 72- 78 ,(1996) , 10.1109/CIFER.1996.501826
Amy P. Abernethy, Lynn M. Etheredge, Patricia A. Ganz, Paul Wallace, Robert R. German, Chalapathy Neti, Peter B. Bach, Sharon B. Murphy, Rapid-Learning System for Cancer Care Journal of Clinical Oncology. ,vol. 28, pp. 4268- 4274 ,(2010) , 10.1200/JCO.2010.28.5478
Y. Bentz, L. Boone, J. Connor, Modelling stock return sensitivities to economic factors with the Kalman filter and neural networks IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr). pp. 79- 82 ,(1996) , 10.1109/CIFER.1996.501827