The Deconfounded Recommender: A Causal Inference Approach to Recommendation.

作者: Laurent Charlin , Dawen Liang , David M. Blei , Yixin Wang

DOI:

关键词:

摘要: The goal of recommendation is to show users items that they will like. Though usually framed as a prediction, the spirit of recommendation is to answer an interventional question …

参考文章(6)
Yifan Hu, Yehuda Koren, Chris Volinsky, Collaborative Filtering for Implicit Feedback Datasets international conference on data mining. pp. 263- 272 ,(2008) , 10.1109/ICDM.2008.22
Andriy Mnih, Ruslan R Salakhutdinov, Probabilistic Matrix Factorization neural information processing systems. ,vol. 20, pp. 1257- 1264 ,(2007)
Keisuke Hirano, Guido W. Imbens, The Propensity Score with Continuous Treatments Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives. pp. 73- 84 ,(2005) , 10.1002/0470090456.CH7
Prem Gopalan, David M. Blei, Jake M. Hofman, Scalable recommendation with hierarchical Poisson factorization uncertainty in artificial intelligence. pp. 326- 335 ,(2015)
David M. Blei, Yixin Wang, The Blessings of Multiple Causes arXiv: Machine Learning. ,(2018)
Thorsten Joachims, Tobias Schnabel, Adith Swaminathan, Navin Chandak, Ashudeep Singh, Recommendations as Treatments: Debiasing Learning and Evaluation arXiv: Learning. ,(2016)