参考文章(44)
Stan Matwin, Privacy-Preserving Data Mining Techniques: Survey and Challenges Studies in Applied Philosophy, Epistemology and Rational Ethics. pp. 209- 221 ,(2013) , 10.1007/978-3-642-30487-3_11
Krystyna Napierala, Jerzy Stefanowski, Types of minority class examples and their influence on learning classifiers from imbalanced data intelligent information systems. ,vol. 46, pp. 563- 597 ,(2016) , 10.1007/S10844-015-0368-1
danah boyd, Kate Crawford, CRITICAL QUESTIONS FOR BIG DATA Information, Communication & Society. ,vol. 15, pp. 662- 679 ,(2012) , 10.1080/1369118X.2012.678878
João Gama, Auroop Ganguly, Olufemi Omitaomu, Raju Vatsavai, Mohamed Gaber, Knowledge discovery from data streams intelligent data analysis. ,vol. 13, pp. 403- 404 ,(2009) , 10.1201/EBK1439826119
Boris Glavic, Big Data Provenance: Challenges and Implications for Benchmarking Specifying Big Data Benchmarks. pp. 72- 80 ,(2014) , 10.1007/978-3-642-53974-9_7
Gregory Ditzler, Manuel Roveri, Cesare Alippi, Robi Polikar, Learning in Nonstationary Environments: A Survey IEEE Computational Intelligence Magazine. ,vol. 10, pp. 12- 25 ,(2015) , 10.1109/MCI.2015.2471196
Ron Bekkerman, Mikhail Bilenko, John Langford, Scaling up machine learning: parallel and distributed approaches knowledge discovery and data mining. pp. 4- ,(2011) , 10.1145/2107736.2107740
Andrea De Mauro, Marco Greco, Michele Grimaldi, What is Big Data? A Consensual Definition and a Review of Key Research Topics INTERNATIONAL CONFERENCE ON INTEGRATED INFORMATION (IC-ININFO 2014): Proceedings of the 4th International Conference on Integrated Information. ,vol. 1644, pp. 97- 104 ,(2015) , 10.1063/1.4907823
Cynthia Rudin, Algorithms for interpretable machine learning knowledge discovery and data mining. pp. 1519- 1519 ,(2014) , 10.1145/2623330.2630823
David J. Hand, Data mining Social Science Computer Review. ,vol. 18, pp. 442- 449 ,(2000) , 10.1177/089443930001800407