Quantum $\mathrm{SO}(3)$ groups and quantum group actions on $M_2$

作者: Piotr M. Soltan

DOI:

关键词:

摘要: Answering a question of Shuzhou Wang we give description quantum $\SO(3)$ groups Podle\'s as universal objects. We use this result to complete classification all continuous compact group actions on $M_2$.

参考文章(12)
Marcin Marciniak, Quantum symmetries in noncommutative C*-systems Banach Center Publications. ,vol. 43, pp. 297- 307 ,(1998) , 10.4064/-43-1-297-307
S. L. Woronowicz, Unbounded elements affiliated withC*-algebras and non-compact quantum groups Communications in Mathematical Physics. ,vol. 136, pp. 399- 432 ,(1991) , 10.1007/BF02100032
P. Podleś, E. Müller, Introduction to Quantum Groups Reviews in Mathematical Physics. ,vol. 10, pp. 511- 551 ,(1998) , 10.1142/S0129055X98000173
Piotr M. Sołtan, Quantum families of maps and quantum semigroups on finite quantum spaces Journal of Geometry and Physics. ,vol. 59, pp. 354- 368 ,(2009) , 10.1016/J.GEOMPHYS.2008.11.007
S. L. Woronowicz, Compact matrix pseudogroups Communications in Mathematical Physics. ,vol. 111, pp. 613- 665 ,(1987) , 10.1007/BF01219077
Shuzhou Wang, Quantum Symmetry Groups of Finite Spaces Communications in Mathematical Physics. ,vol. 195, pp. 195- 211 ,(1998) , 10.1007/S002200050385
Masaki Izumi, Non-commutative Poisson Boundaries and Compact Quantum Group Actions Advances in Mathematics. ,vol. 169, pp. 1- 57 ,(2002) , 10.1006/AIMA.2001.2053
S. L. WORONOWICZ, QUANTUM EXPONENTIAL FUNCTION Reviews in Mathematical Physics. ,vol. 12, pp. 873- 920 ,(2000) , 10.1142/S0129055X00000344
Piotr Podlés, SYMMETRIES OF QUANTUM SPACES. SUBGROUPS AND QUOTIENT SPACES OF QUANTUM SU(2) AND SO(3) GROUPS Communications in Mathematical Physics. ,vol. 170, pp. 1- 20 ,(1995) , 10.1007/BF02099436
Stefaan Vaes, A new approach to induction and imprimitivity results Journal of Functional Analysis. ,vol. 229, pp. 317- 374 ,(2005) , 10.1016/J.JFA.2004.11.016