Improved power output by incorporating polyvinyl alcohol into the anode of a microbial fuel cell

作者: XF Chen , XS Wang , KT Liao , LZ Zeng , LD Xing

DOI: 10.1039/C5TA03318G

关键词:

摘要: In this study, polyvinyl alcohol (PVA) is proposed as a new binder to improve the power output of microbial fuel cell. The physical and chemical properties PVA are characterized with Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), contact angle testing, density functional theory calculations, scanning electron microscopy (SEM). electrochemical performance an anode using carbon nanotubes electrocatalyst evaluated in Escherichia coli based cell chronoamperometry, impedance spectroscopy (EIS), polarization curve measurements, comparison made conventional binder, polytetrafluoroethylene (PTFE). It found that more hydrophilic has stronger interactions bacterial membrane than PTFE. Accordingly, facilitates formation biofilms thus exhibits improved transfer kinetics between bacteria compared MFC produces largest maximum power, 1.631 W m−2, which 97.9% greater one produced by PTFE (0.824 m−2).

参考文章(50)
Xing Xie, Liangbing Hu, Mauro Pasta, George F. Wells, Desheng Kong, Craig S. Criddle, Yi Cui, Three-Dimensional Carbon Nanotube—Textile Anode for High-Performance Microbial Fuel Cells Nano Letters. ,vol. 11, pp. 291- 296 ,(2011) , 10.1021/NL103905T
Lizhen Zeng, Lixia Zhang, Weishan Li, Shaofei Zhao, Jianfei Lei, Zhihui Zhou, Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae. Biosensors and Bioelectronics. ,vol. 25, pp. 2696- 2700 ,(2010) , 10.1016/J.BIOS.2010.05.002
Dilip K. Sharma, Fengting Li, Yi-nan Wu, Electrospinning of Nafion and polyvinyl alcohol into nanofiber membranes: A facile approach to fabricate functional adsorbent for heavy metals Colloids and Surfaces A: Physicochemical and Engineering Aspects. ,vol. 457, pp. 236- 243 ,(2014) , 10.1016/J.COLSURFA.2014.05.038
Yan Qiao, Shu-Juan Bao, Chang Ming Li, Xiao-Qiang Cui, Zhi-Song Lu, Jun Guo, Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells ACS Nano. ,vol. 2, pp. 113- 119 ,(2008) , 10.1021/NN700102S
Bruce E. Logan, Bert Hamelers, René Rozendal, Uwe Schröder, Jürg Keller, Stefano Freguia, Peter Aelterman, Willy Verstraete, Korneel Rabaey, Microbial Fuel Cells: Methodology and Technology† Environmental Science & Technology. ,vol. 40, pp. 5181- 5192 ,(2006) , 10.1021/ES0605016
M. C. Gutiérrez, Z. Y. García-Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M. L. Ferrer, F. del Monte, Poly(vinyl alcohol) Scaffolds with Tailored Morphologies for Drug Delivery and Controlled Release Advanced Functional Materials. ,vol. 17, pp. 3505- 3513 ,(2007) , 10.1002/ADFM.200700093
Tomonori Saito, Timothy H. Roberts, Timothy E. Long, Bruce E. Logan, Michael A. Hickner, Neutral hydrophilic cathode catalyst binders for microbial fuel cells Energy and Environmental Science. ,vol. 4, pp. 928- 934 ,(2011) , 10.1039/C0EE00229A
Swades K Chaudhuri, Derek R Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells Nature Biotechnology. ,vol. 21, pp. 1229- 1232 ,(2003) , 10.1038/NBT867
Lixia Zhang, Shungui Zhou, Li Zhuang, Weishan Li, Jintao Zhang, Na Lu, Lifang Deng, Microbial fuel cell based on Klebsiella pneumoniae biofilm Electrochemistry Communications. ,vol. 10, pp. 1641- 1643 ,(2008) , 10.1016/J.ELECOM.2008.08.030
M.H. Osman, A.A. Shah, F.C. Walsh, Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial. Biosensors and Bioelectronics. ,vol. 26, pp. 953- 963 ,(2010) , 10.1016/J.BIOS.2010.08.057