Explosive percolation is continuous, but with unusual finite size behavior.

作者: Peter Grassberger , Claire Christensen , Golnoosh Bizhani , Seung-Woo Son , Maya Paczuski

DOI: 10.1103/PHYSREVLETT.106.225701

关键词:

摘要: We study four Achlioptas-type processes with ``explosive'' percolation transitions. All transitions are clearly continuous, but their finite size scaling functions not entirely holomorphic. The distributions of the order parameter, i.e., relative ${s}_{\mathrm{max}}/N$ largest cluster, double humped. But---in contrast to first-order phase transitions---the distance between two peaks decreases system $N$ as ${N}^{\ensuremath{-}\ensuremath{\eta}}$ $\ensuremath{\eta}g0$. find different positive values $\ensuremath{\beta}$ (defined via $⟨{s}_{\mathrm{max}}/N⟩\ensuremath{\sim}(p\ensuremath{-}{p}_{c}{)}^{\ensuremath{\beta}}$ for infinite systems) each model, showing that they all in universality classes. In contrast, exponent $\ensuremath{\Theta}$ such observables homogeneous $(p\ensuremath{-}{p}_{c}){N}^{\ensuremath{\Theta}}$) is close to---or even equal to---$1/2$ models.

参考文章(25)
Shlomo Havlin, NAM Araújo, Sergey V Buldyrev, CS Dias, Roni Parshani, G Paul, H Eugene Stanley, Catastrophic cascade of failures in interdependent networks Nature. ,vol. 464, pp. 1025- 1028 ,(2010) , 10.1038/NATURE08932
Raissa M. D’Souza, Michael Mitzenmacher, Local cluster aggregation models of explosive percolation. Physical Review Letters. ,vol. 104, pp. 195702- ,(2010) , 10.1103/PHYSREVLETT.104.195702
Eric J. Friedman, Adam S. Landsberg, Construction and Analysis of Random Networks with Explosive Percolation Physical Review Letters. ,vol. 103, pp. 255701- ,(2009) , 10.1103/PHYSREVLETT.103.255701
Maria Serena Causo, Barbara Coluzzi, Peter Grassberger, Simple model for the DNA denaturation transition. Physical Review E. ,vol. 62, pp. 3958- 3973 ,(2000) , 10.1103/PHYSREVE.62.3958
Shai Wiseman, Eytan Domany, Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems Physical Review Letters. ,vol. 81, pp. 22- 25 ,(1998) , 10.1103/PHYSREVLETT.81.22
Y. S. Cho, J. S. Kim, J. Park, B. Kahng, D. Kim, Percolation Transitions in Scale-Free Networks under the Achlioptas Process Physical Review Letters. ,vol. 103, pp. 135702- 135702 ,(2009) , 10.1103/PHYSREVLETT.103.135702
Jan Nagler, Anna Levina, Marc Timme, Impact of single links in competitive percolation Nature Physics. ,vol. 7, pp. 265- 270 ,(2011) , 10.1038/NPHYS1860
R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Explosive percolation transition is actually continuous. Physical Review Letters. ,vol. 105, pp. 255701- ,(2010) , 10.1103/PHYSREVLETT.105.255701
Filippo Radicchi, Santo Fortunato, Explosive percolation in scale-free networks. Physical Review Letters. ,vol. 103, pp. 168701- ,(2009) , 10.1103/PHYSREVLETT.103.168701