Bone density growth and the biomechanics of healthy and prosthetic femur

作者: Joan O’Connor , Lavinia A Borges , Fernando P Duda , Antônio GB da Cruz , None

DOI: 10.1007/S40430-017-0874-X

关键词:

摘要: The development of computational models to describe bone behavior when prosthetic devices are used has gained tremendous importance. In particular, modeling for growth and resorption processes can be a useful tool determine the implant success or failure. We present model investigating density healthy femur with total hip arthroplasty. model, which is based on continuum theory remodeling in biological materials that accounts coupling between mechanical effects, implemented COMSOL Multiphysics two simulation examples presented. first example, where loads due daily physical activities considered, it shown higher stress zones (in mid-diaphysis about 46 MPa) lower neck 28 candidates zones, respectively. addition, levels these may lead possible periprosthetic fractures (bone overloaded 7–10 MPa post-operatively) eventually aseptic loosening femoral unloaded 13–17 post-operatively). second load corresponds average considered previously, obtained results good agreement real distribution proximal femur, illustrates capability locate (of 1615 $$\mathrm {kg/{m}^{3}}$$ mid-diaphysis) 1259 neck) post-operative condition after arthroplasty surgical procedure.

参考文章(61)
Stephan Frenzel, Vilmos Vécsei, Lukas Negrin, Periprosthetic femoral fractures—incidence, classification problems and the proposal of a modified classification scheme International Orthopaedics. ,vol. 39, pp. 1909- 1920 ,(2015) , 10.1007/S00264-015-2967-4
G. Bergmann, F. Graichen, A. Rohlmann, A. Bender, B. Heinlein, G.N. Duda, M.O. Heller, M.M. Morlock, Realistic loads for testing hip implants Bio-medical Materials and Engineering. ,vol. 20, pp. 65- 75 ,(2010) , 10.3233/BME-2010-0616
DR Carter, WC Hayes, The compressive behavior of bone as a two-phase porous structure. Journal of Bone and Joint Surgery, American Volume. ,vol. 59, pp. 954- 962 ,(1977) , 10.2106/00004623-197759070-00021
M. Niinomi, M. Nakai, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone International Journal of Biomaterials. ,vol. 2011, pp. 836587- 836587 ,(2011) , 10.1155/2011/836587
Christopher R. Jacobs, Marc E. Levenston, Gary S. Beaupré, Juan C. Simo, Dennis R. Carter, Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach Journal of Biomechanics. ,vol. 28, pp. 449- 459 ,(1995) , 10.1016/0021-9290(94)00087-K
Saeid Samiezadeh, Pouria Tavakkoli Avval, Zouheir Fawaz, Habiba Bougherara, Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study. Clinical Biomechanics. ,vol. 29, pp. 803- 810 ,(2014) , 10.1016/J.CLINBIOMECH.2014.05.010
Larry A. Taber, Biomechanics of Growth, Remodeling, and Morphogenesis Applied Mechanics Reviews. ,vol. 48, pp. 487- 545 ,(1995) , 10.1115/1.3005109
D. Ambrosi, G.A. Ateshian, E.M. Arruda, S.C. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E. Kuhl, J.E. Olberding, L.A. Taber, K. Garikipati, Perspectives on biological growth and remodeling Journal of The Mechanics and Physics of Solids. ,vol. 59, pp. 863- 883 ,(2011) , 10.1016/J.JMPS.2010.12.011
Julius Wolff, The Law of Bone Remodelling ,(1986)