Almost all Regular Graphs are Hamiltonian

作者: Béla Bollobás

DOI: 10.1016/S0195-6698(83)80039-0

关键词:

摘要:

参考文章(9)
E. M. Wright, For How Many Edges is a Graph Almost Certainly Hamiltonian? Journal of the London Mathematical Society. ,vol. s2-8, pp. 44- 48 ,(1974) , 10.1112/JLMS/S2-8.1.44
Edward A Bender, E.Rodney Canfield, The asymptotic number of labeled graphs with given degree sequences Journal of Combinatorial Theory, Series A. ,vol. 24, pp. 296- 307 ,(1978) , 10.1016/0097-3165(78)90059-6
L. Pósa, Hamiltonian circuits in random graphs Discrete Mathematics. ,vol. 14, pp. 359- 364 ,(1976) , 10.1016/0012-365X(76)90068-6
D. Angluin, L.G. Valiant, Fast probabilistic algorithms for hamiltonian circuits and matchings Journal of Computer and System Sciences. ,vol. 18, pp. 155- 193 ,(1979) , 10.1016/0022-0000(79)90045-X
T.I. Fenner, A.M. Frieze, On the existence of Hamiltonian cycles in a class of random graphs Discrete Mathematics. ,vol. 45, pp. 301- 305 ,(1983) , 10.1016/0012-365X(83)90046-8
János Komlós, Endre Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph Discrete Mathematics. ,vol. 306, pp. 1032- 1038 ,(1983) , 10.1016/0012-365X(83)90021-3
Béla Bollobás, A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs European Journal of Combinatorics. ,vol. 1, pp. 311- 316 ,(1980) , 10.1016/S0195-6698(80)80030-8
Béla Bollobás, The Asymptotic Number of Unlabelled Regular Graphs Journal of the London Mathematical Society. ,vol. s2-26, pp. 201- 206 ,(1982) , 10.1112/JLMS/S2-26.2.201
J. W. Moon, Almost all graphs have a spanning cycle Canadian Mathematical Bulletin. ,vol. 15, pp. 39- 41 ,(1972) , 10.4153/CMB-1972-008-3