Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm

作者: M. Delattre , M. Lavielle

DOI: 10.1016/J.CSDA.2011.12.017

关键词:

摘要: Mixed hidden Markov models have been recently defined in the literature as an extension of for dealing with population studies. The notion mixed is particularly relevant modeling longitudinal data collected during clinical trials, especially when distinct disease stages can be considered. However, parameter estimation such complex, due to their highly nonlinear structure and presence unobserved states. Moreover, existing inference algorithms are extremely time consuming model includes several random effects. New procedures proposed estimating parameters, individual parameters sequences states models. main contribution consists a specific version stochastic approximation EM algorithm coupled Baum-Welch parameters. properties this investigated via Monte-Carlo simulation study, application description daily seizure counts epileptic patients presented.

参考文章(16)
Eric Moulines, Marc Lavielle, Bernard Delyon, Convergence of a stochastic approximation version of the EM algorithm Annals of Statistics. ,vol. 27, pp. 94- 128 ,(1999) , 10.1214/AOS/1018031103
Tobias Ryden, Olivier Capp, Eric Moulines, Inference in Hidden Markov Models ,(2008)
Florence Chaubert-Pereira, Yann Guédon, Christian Lavergne, Catherine Trottier, Markov and semi-Markov switching linear mixed models used to identify forest tree growth components. Biometrics. ,vol. 66, pp. 753- 762 ,(2010) , 10.1111/J.1541-0420.2009.01338.X
Rachel MacKay Altman, Mixed Hidden Markov Models Journal of the American Statistical Association. ,vol. 102, pp. 201- 210 ,(2007) , 10.1198/016214506000001086
Leonard E. Baum, Ted Petrie, Statistical Inference for Probabilistic Functions of Finite State Markov Chains Annals of Mathematical Statistics. ,vol. 37, pp. 1554- 1563 ,(1966) , 10.1214/AOMS/1177699147
Vladimir V. Anisimov, Hugo J. Maas, Meindert Danhof, Oscar Della Pasqua, Analysis of responses in migraine modelling using hidden Markov models Statistics in Medicine. ,vol. 26, pp. 4163- 4178 ,(2007) , 10.1002/SIM.2852
Antonello Maruotti, Tobias Rydén, A semiparametric approach to hidden Markov models under longitudinal observations Statistics and Computing. ,vol. 19, pp. 381- 393 ,(2009) , 10.1007/S11222-008-9099-2
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Estelle Kuhn, Marc Lavielle, Coupling a stochastic approximation version of EM with an MCMC procedure Esaim: Probability and Statistics. ,vol. 8, pp. 115- 131 ,(2004) , 10.1051/PS:2004007
E. Kuhn, M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models Computational Statistics & Data Analysis. ,vol. 49, pp. 1020- 1038 ,(2005) , 10.1016/J.CSDA.2004.07.002