From Data to Models

作者: Georg Ch. Pflug , Alois Pichler

DOI: 10.1007/978-3-319-08843-3_4

关键词:

摘要: Multistage decision problems are designed to solve real world problems. It is especially important model the reality in an appropriate way so that optimal solutions of can be used as decisions for problem at hand. Recall we consider always mathematical optimization approximation (see Fig. 1.2 introduction) and aware possible errors. A crucial part modeling find stochastic and—as a further step—an tree representation multistage scenario process. Typically, there sample past data available, but not more.

参考文章(123)
Adrian S. Werner, Alois Pichler, Kjetil T. Midthun, Lars Hellemo, Asgeir Tomasgard, Risk Measures in Multi-Horizon Scenario Trees Springer, Boston, MA. pp. 177- 201 ,(2013) , 10.1007/978-1-4614-9035-7_8
C. C. Heyde, On a Property of the Lognormal Distribution Journal of the royal statistical society series b-methodological. ,vol. 25, pp. 16- 18 ,(1963) , 10.1007/978-1-4419-5823-5_6
Liqun Qi, Wenyu Sun, An Iterative Method for the Minimax Problem Springer, Boston, MA. pp. 55- 67 ,(1995) , 10.1007/978-1-4613-3557-3_3
Alan J. Hoffman, Joseph B. Kruskal, Integral Boundary Points of Convex Polyhedra 50 Years of Integer Programming. pp. 49- 76 ,(2010) , 10.1007/978-3-540-68279-0_3
René Henrion, Cyrille Strugarek, Convexity of Chance Constraints with Dependent Random Variables: The Use of Copulae Springer, New York, NY. pp. 427- 439 ,(2011) , 10.1007/978-1-4419-9586-5_17
F. Bolley, Separability and completeness for the Wasserstein distance Springer, Berlin, Heidelberg. pp. 371- 377 ,(2008) , 10.1007/978-3-540-77913-1_17
Stein W. Wallace, Alan J. King, Modeling with Stochastic Programming ,(2012)
Josef Dick, Friedrich Pillichshammer, Digital Nets and Sequences Cambridge University Press. ,(2010) , 10.1017/CBO9780511761188