Learning stochastically stable Gaussian process state–space models

作者: Jonas Umlauft , Sandra Hirche

DOI: 10.1016/J.IFACSC.2020.100079

关键词:

摘要: Control systems are increasingly applied in domains where an analytic description of the system dynamics does not exist or is difficult to obtain. Example applications include …

参考文章(57)
Yoshihiro Sawano, Saburou Saitoh, Theory of Reproducing Kernels and Its Applications ,(1988)
A. Papachristodoulou, S. Prajna, On the construction of Lyapunov functions using the sum of squares decomposition conference on decision and control. ,vol. 3, pp. 3482- 3487 ,(2002) , 10.1109/CDC.2002.1184414
David H. Wolpert, The Supervised Learning No-Free-Lunch Theorems Soft Computing and Industry. pp. 25- 42 ,(2002) , 10.1007/978-1-4471-0123-9_3
Christopher K.I. Williams, Francesco Vivarelli, Upper and Lower Bounds on the Learning Curve for Gaussian Processes Machine Learning. ,vol. 40, pp. 77- 102 ,(2000) , 10.1023/A:1007601601278
V. N. Temlyakov, A remark on covering arXiv: Metric Geometry. ,(2013)
Christopher K I Williams, Carl Edward Rasmussen, Gaussian Processes for Machine Learning ,(2005)
Stefan Schaal, Evangelos Theodorou, Jonas Buchli, A Generalized Path Integral Control Approach to Reinforcement Learning Journal of Machine Learning Research. ,vol. 11, pp. 3137- 3181 ,(2010)
Stefan Schaal, Jan Peters, Jun Nakanishi, Auke Ijspeert, Learning Movement Primitives international symposium on robotics. pp. 561- 572 ,(2005) , 10.1007/11008941_60