The Beltrami equations for quasiconformal mappings on strongly pseudoconvex hypersurfaces

作者: Q. Y. Wu , W. Wang

DOI: 10.1134/S0037446612020140

关键词:

摘要: We show that quasiconformal mappings on strongly pseudoconvex hypersurfaces satisfy a system of Beltrami equations. In particular, the 1-quasiconformal these surfaces are CR or anti-CR mappings. Furthermore, if also real-analytic and nonspherical, then them, which fix point, can be linearized.

参考文章(33)
Adam Korányi, Hans Martin Reimann, Quasiconformal mappings on CR manifolds Springer, Berlin, Heidelberg. pp. 59- 75 ,(1990) , 10.1007/BFB0089405
S. K. Vodop'yanov, Monotone functions and quasiconformal mappings on Carnot groups Siberian Mathematical Journal. ,vol. 37, pp. 1113- 1136 ,(1996) , 10.1007/BF02106736
Maria Karmanova, Sergey Vodop′yanov, Geometry of Carnot-Caratheodory Spaces, Differentiability, Coarea and Area Formulas Birkhäuser Basel. pp. 233- 335 ,(2009) , 10.1007/978-3-7643-9906-1_14
Luca Capogna, Donatella Danielli, Scott D. Pauls, Jeremy T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem ,(2007)
Mikhael Gromov, Carnot-Carathéodory spaces seen from within Birkhäuser Basel. pp. 79- 323 ,(1996) , 10.1007/978-3-0348-9210-0_2
Robert S. Strichartz, Sub-Riemannian geometry Journal of Differential Geometry. ,vol. 24, pp. 221- 263 ,(1986) , 10.4310/JDG/1214440436
Elias M. Stein, Gerald B. Folland, Hardy spaces on homogeneous groups ,(1982)