A supersymmetric transfer matrix and differentiability of the density of states in the one-dimensional Anderson model

作者: Massimo Campanino , Abel Klein

DOI: 10.1007/BF01211591

关键词:

摘要: LetH=−Δ+V onl 2(ℤ), whereV(x),x∈ℤ, are i.i.d.r.v.'s with common probability distributionv. Leth(t)=∫e −itv dv(v) and letk(E) be the integrated density of states. It is proven: (i) Ifh isn-times differentiable withh (j)(t)=O((1+|t|)−α) for some α>0,j=0, 1, ...,n, thenk(E) aC n function. In particular, ifv has compact support andh(t)=O((1+|t|)−α) α>0, isC ∞. This allowsv to singular continuous. (ii) Ifh(t)=O(e −α|t|) α>0 analytic in a strip about real axis. The proof uses supersymmetric replica trick rewrite averaged Green's function as two-point one-dimensional field theory which studied by transfer matrix method.

参考文章(23)
T. A. A. B., A. Erdelyi, Tables of Integral Transforms. I The Mathematical Gazette. ,vol. 39, pp. 337- ,(1955) , 10.2307/3608613
Joseph Avron, Barry Simon, Almost periodic Schrödinger operators II. The integrated density of states Duke Mathematical Journal. ,vol. 50, pp. 369- 391 ,(1983) , 10.1215/S0012-7094-83-05016-0
W. N. Bailey, E. C. Titchmarsh, Introduction to the theory of Fourier integrals The Mathematical Gazette. ,vol. 22, pp. 85- ,(1938) , 10.2307/3607457
G. Parisi, N. Sourlas, Self avoiding walk and supersymmetry Journal de Physique Lettres. ,vol. 41, pp. 403- 405 ,(1980) , 10.1051/JPHYSLET:019800041017040300
Franz Wegner, Bounds on the density of states in disordered systems European Physical Journal B. ,vol. 44, pp. 9- 15 ,(1981) , 10.1007/BF01292646
L. A. Pastur, Spectral properties of disordered systems in the one-body approximation Communications in Mathematical Physics. ,vol. 75, pp. 179- 196 ,(1980) , 10.1007/BF01222516
W. Craig, B. Simon, Subharmonicity of the Lyaponov index Duke Mathematical Journal. ,vol. 50, pp. 551- 560 ,(1983) , 10.1215/S0012-7094-83-05025-1
F. Constantinescu, J. Fr�hlich, T. Spencer, Analyticity of the density of states and replica method for random schrödinger operators on a lattice Journal of Statistical Physics. ,vol. 34, pp. 571- 596 ,(1984) , 10.1007/BF01018559