Finite-size scaling in Hamiltonian field theory

作者: C J Hamer , M N Barber

DOI: 10.1088/0305-4470/13/5/011

关键词:

摘要: A new method for investigating the behaviour of lattice Hamiltonian field theories is described. The uses finite-size scaling to extrapolate finite-lattice results infinite chain limit. technique illustrated by application transverse Ising model and (O(N)-Heisenberg Hamiltonians (N=2,3) in (1+1) dimensions. accuracy appears comparable or better than existing approaches.

参考文章(15)
C.J. Hamer, Estimating eigenvalues for lattice hamiltonian models Physics Letters B. ,vol. 82, pp. 75- 78 ,(1979) , 10.1016/0370-2693(79)90429-5
Pierre Pfeuty, The one-dimensional Ising model with a transverse field Annals of Physics. ,vol. 57, pp. 79- 90 ,(1970) , 10.1016/0003-4916(70)90270-8
Jorge V. José, Leo P. Kadanoff, Scott Kirkpatrick, David R. Nelson, Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model Physical Review B. ,vol. 16, pp. 1217- 1241 ,(1977) , 10.1103/PHYSREVB.16.1217
C. J. Hamer, J. B. Kogut, L. Susskind, Phases of Two-Dimensional Heisenberg Spin Systems from Strong-Coupling Expansions Physical Review Letters. ,vol. 41, pp. 1337- 1340 ,(1978) , 10.1103/PHYSREVLETT.41.1337
T. D. SCHULTZ, D. C. MATTIS, E. H. LIEB, Two-Dimensional Ising Model as a Soluble Problem of Many Fermions Reviews of Modern Physics. ,vol. 36, pp. 856- 871 ,(1964) , 10.1103/REVMODPHYS.36.856
L Sneddon, R B Stinchcombe, A renormalisation group approach to a quantum spin system Journal of Physics C: Solid State Physics. ,vol. 12, pp. 3761- 3770 ,(1979) , 10.1088/0022-3719/12/18/021
Michael E. Fisher, Michael N. Barber, Scaling Theory for Finite-Size Effects in the Critical Region Physical Review Letters. ,vol. 28, pp. 1516- 1519 ,(1972) , 10.1103/PHYSREVLETT.28.1516
J M Kosterlitz, The critical properties of the two-dimensional xy model Journal of Physics C: Solid State Physics. ,vol. 7, pp. 1046- 1060 ,(1974) , 10.1088/0022-3719/7/6/005
R. Jullien, P. Pfeuty, J. N. Fields, S. Doniach, Zero-temperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension Physical Review B. ,vol. 19, pp. 4653- 4660 ,(1979) , 10.1103/PHYSREVB.18.3568