Phase and Angle Variables in Quantum Mechanics

作者: P. CARRUTHERS , MICHAEL MARTIN NIETO

DOI: 10.1103/REVMODPHYS.40.411

关键词:

摘要: The quantum-mechanical description of phase and angle variables is reviewed, with emphasis on the proper mathematical these coordinates. relations among operators state vectors under consideration are clarified in context Heisenberg uncertainty relations. familiar case azimuthal variable $\ensuremath{\phi}$ its "conjugate" angular momentum ${L}_{z}$ discussed. Various pitfalls associated periodicity problem avoided by employing periodic ($sin\ensuremath{\phi}$ $cos\ensuremath{\phi}$ to describe variable. Well-defined derived A detailed analysis three-dimensional harmonic oscillator excited coherent states given. simple usual assumption that a (Hermitian) operator $\ensuremath{\varphi}$ (conjugate number $N$) exists shown be erroneous. However, cosine sine $C$ $S$ exist appr\'opriate variables. Poisson bracket argument using action-angle (rather $J$, $cos\ensuremath{\varphi}$, $sin\ensuremath{\varphi}$) used deduce $S$. spectra eigenfunctions investigated, along important "phase-difference" properties various types analyzed special attention transition classical limit. utility as basis for evolution density matrix emphasized. In this it easy identify Liouville equation "corrections." Mention made possible physical applications superfluid systems.

参考文章(39)
D. Judge, J.T. Lewis, On the commutator ZLZ, φ] Physics Letters. ,vol. 5, pp. 190- 190 ,(1963) , 10.1016/S0375-9601(63)96306-0
W. Heisenberg, A quantum-theoretical reinterpretation of kinematic and mechanical relations European Physical Journal A. ,vol. 33, pp. 879- 893 ,(1925) , 10.1007/BF01328377
Albert Einstein, Boris Podolsky, Nathan Rosen, None, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review. ,vol. 47, pp. 777- 780 ,(1935) , 10.1103/PHYSREV.47.777
P. Carruthers, M. M. Nieto, Coherent States and the Forced Quantum Oscillator American Journal of Physics. ,vol. 33, pp. 537- 544 ,(1965) , 10.1119/1.1971895
James Albertson, Von Neumann's Hidden-Parameter Proof American Journal of Physics. ,vol. 29, pp. 478- 484 ,(1961) , 10.1119/1.1937816
J. R. Anderson, A. V. Gold, de Haas-van Alphen Effect and Internal Field in Iron Physical Review Letters. ,vol. 10, pp. 227- 229 ,(1963) , 10.1103/PHYSREVLETT.10.227
Michael Martin Nieto, Quantized phase effect and Josephson tunneling Physical Review. ,vol. 167, pp. 416- 418 ,(1968) , 10.1103/PHYSREV.167.416
K. Kraus, A further remark on uncertainty relations European Physical Journal. ,vol. 201, pp. 134- 141 ,(1967) , 10.1007/BF01332181
A. A. Evett, H. M. Mahmoud, Uncertainty relation with angle variables Il Nuovo Cimento. ,vol. 38, pp. 295- 301 ,(1965) , 10.1007/BF02750458