Using the Fraction of Missing Information to Identify Auxiliary Variables for Imputation Procedures via Proxy Pattern‐mixture Models

作者: Rebecca Andridge , Katherine Jenny Thompson

DOI: 10.1111/INSR.12091

关键词:

摘要: Summary In many surveys, imputation procedures are used to account for non-response bias induced by either unit or item non-response. Such optimised (in terms of reducing bias) when the models include covariates that highly predictive both response and outcome variables. To achieve this, we propose a method selecting sets in regression determine cells one more variables, using fraction missing information (FMI) as obtained via proxy pattern-mixture (PMM) model key metric. In our variable selection approach, use PPM obtain maximum likelihood estimate FMI separate candidate look point at which changes level off further auxiliary variables do not improve model. We illustrate proposed approach empirical data from Ohio Medicaid Assessment Survey Service Annual Survey.

参考文章(19)
D Kasprzak, G Kalton, The treatment of missing survey data Survey Methodology. ,vol. 12, pp. 1- 16 ,(1986)
Xiao-Li Meng, Multiple-Imputation Inferences with Uncongenial Sources of Input Statistical Science. ,vol. 9, pp. 538- 558 ,(1994) , 10.1214/SS/1177010269
Linda M. Collins, Joseph L. Schafer, Chi-Ming Kam, A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods. ,vol. 6, pp. 330- 351 ,(2001) , 10.1037/1082-989X.6.4.330
David Haziza, Jean-François Beaumont, On the Construction of Imputation Classes in Surveys International Statistical Review. ,vol. 75, pp. 25- 43 ,(2007) , 10.1111/J.1751-5823.2006.00002.X
Roderick JA Little, None, Pattern-Mixture Models for Multivariate Incomplete Data Journal of the American Statistical Association. ,vol. 88, pp. 125- 134 ,(1993) , 10.1080/01621459.1993.10594302
J. Wagner, A Comparison of Alternative Indicators for the Risk of Nonresponse Bias Public Opinion Quarterly. ,vol. 76, pp. 555- 575 ,(2012) , 10.1093/POQ/NFS032
Tore Dalenius, Joseph L. Hodges, Minimum Variance Stratification Journal of the American Statistical Association. ,vol. 54, pp. 88- 101 ,(1959) , 10.1080/01621459.1959.10501501
F. Kreuter, K. Olson, J. Wagner, T. Yan, T. M. Ezzati-Rice, C. Casas-Cordero, M. Lemay, A. Peytchev, R. M. Groves, T. E. Raghunathan, Using proxy measures and other correlates of survey outcomes to adjust for non‐response: examples from multiple surveys Journal of The Royal Statistical Society Series A-statistics in Society. ,vol. 173, pp. 389- 407 ,(2010) , 10.1111/J.1467-985X.2009.00621.X