A cryptographic application of Weil descent

作者: Steven D. Galbraith⋆ , Nigel P. Smart

DOI: 10.1007/3-540-46665-7_23

关键词:

摘要: This paper gives some details about howWeil descent can be used to solve the discrete logarithm problem on elliptic curves which are defined over finite fields of small characteristic. The original ideas were first introduced into cryptography by Frey. We discuss whether these a threat existing public key systems based curves.

参考文章(14)
Joseph H. Silverman, The Xedni Calculus and the Elliptic Curve Discrete LogarithmProblem Designs, Codes and Cryptography. ,vol. 20, pp. 5- 40 ,(2000) , 10.1023/A:1008319518035
Emil J. Volcheck, Computing in the jacobian of a plane algebraic curve algorithmic number theory symposium. pp. 221- 233 ,(1994) , 10.1007/3-540-58691-1_60
Leonard M. Adleman, Ming-Deh A. Huang, Primality Testing and Abelian Varieties over Finite Fields ,(1992)
Michael J. Jacobson, Neal Koblitz, Joseph H. Silverman, Andreas Stein, Edlyn Teske, Analysis of the Xedni Calculus Attack Designs, Codes and Cryptography. ,vol. 20, pp. 41- 64 ,(2000) , 10.1023/A:1008312401197
Ming-Deh Huang, Doug Ierardi, Efficient Algorithms for the Riemann-Roch Problem and for Addition in the Jacobian of a Curve Journal of Symbolic Computation. ,vol. 18, pp. 519- 539 ,(1994) , 10.1006/JSCO.1994.1063
James L. Hafner, Kevin S. McCurley, A rigorous subexponential algorithm for computation of class groups Journal of the American Mathematical Society. ,vol. 2, pp. 837- 850 ,(1989) , 10.1090/S0894-0347-1989-1002631-0
Ming-Deh Huang, Doug Ierardi, Counting Points on Curves over Finite Fields Journal of Symbolic Computation. ,vol. 25, pp. 1- 21 ,(1998) , 10.1006/JSCO.1997.0164