Energy decomposition analysis

作者: Moritz von Hopffgarten , Gernot Frenking

DOI: 10.1002/WCMS.71

关键词:

摘要: The energy decomposition analysis (EDA) is a powerful method for quantitative interpretation of chemical bonds in terms three major components. instantaneous interaction ΔEint between two fragments A and B molecule A–B partitioned terms, namely (1) the quasiclassical electrostatic ΔEelstat fragments; (2) repulsive exchange (Pauli) ΔEPauli electrons having same spin, (3) orbital (covalent) ΔEorb which comes from relaxation mixing fragments. latter term can be decomposed into contributions orbitals with different symmetry makes it possible to distinguish σ, π, δ bonding. After short introduction theoretical background EDA we present illustrative examples main group transition metal chemistry. results show that interpreted chemically meaningful way thus providing bridge quantum calculations heuristic bonding models traditional extension EDA–Natural Orbitals Chemical Valence (NOCV) breakdown pairwise interacting provides MO correlations diagrams interactions, have been shown past correlate structures reactivities molecules. There link frontier theory rules charge- partitioning scheme provided by EDA–NOCV terms. strength interactions quantitatively estimated associated change electronic structure visualized plotting deformation densities. For further resources related this article, please visit WIREs website.

参考文章(132)
Attila Kovács, Catharine Esterhuysen, Gernot Frenking, The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds. Chemistry: A European Journal. ,vol. 11, pp. 1813- 1825 ,(2005) , 10.1002/CHEM.200400525
Yirong Mo, Geometrical optimization for strictly localized structures Journal of Chemical Physics. ,vol. 119, pp. 1300- 1306 ,(2003) , 10.1063/1.1580094
Irene Resa, Ernesto Carmona, Enrique Gutierrez-Puebla, Angeles Monge, Decamethyldizincocene, a stable compound of Zn(I) with a Zn-Zn bond. Science. ,vol. 305, pp. 1136- 1138 ,(2004) , 10.1126/SCIENCE.1101356
G. Theodoor de Jong, Ruud Visser, F. Matthias Bickelhaupt, Oxidative addition to main group versus transition metals: Insights from the Activation Strain model Journal of Organometallic Chemistry. ,vol. 691, pp. 4341- 4349 ,(2006) , 10.1016/J.JORGANCHEM.2006.03.006
D. Michael P. Mingos, Polyhedral skeletal electron pair approach Accounts of Chemical Research. ,vol. 17, pp. 311- 319 ,(1984) , 10.1021/AR00105A003
Thiago Messias Cardozo, Marco Antonio Chaer Nascimento, Chemical Bonding in the N2 Molecule and the Role of the Quantum Mechanical Interference Effect Journal of Physical Chemistry A. ,vol. 113, pp. 12541- 12548 ,(2009) , 10.1021/JP903963H
Andreas Krapp, F. Matthias Bickelhaupt, Gernot Frenking, Orbital overlap and chemical bonding. Chemistry: A European Journal. ,vol. 12, pp. 9196- 9216 ,(2006) , 10.1002/CHEM.200600564
Axel Diefenbach, F. Matthias Bickelhaupt, Activation of C–H, C–C and C–I bonds by Pd and cis-Pd(CO)2I2. Catalyst–substrate adaptation Journal of Organometallic Chemistry. ,vol. 690, pp. 2191- 2199 ,(2005) , 10.1016/J.JORGANCHEM.2005.02.013
M. A. Blanco, A. Martín Pendás, E. Francisco, Interacting Quantum Atoms: A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules Journal of Chemical Theory and Computation. ,vol. 1, pp. 1096- 1109 ,(2005) , 10.1021/CT0501093
Ralf Tonner, Florian Öxler, Bernhard Neumüller, Wolfgang Petz, Gernot Frenking, Carbodiphosphorane: die Chemie von zweibindigem Kohlenstoff(0) Angewandte Chemie. ,vol. 118, pp. 8206- 8211 ,(2006) , 10.1002/ANGE.200602552